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INTRODUCTION TO SHEAVES

LORING W. TU

Introduced in the 1940s by Leray and Cartan, sheaves are a powerful tool for relating local and

global phenomena on a space. Smooth differential forms of a given degree define a sheaf on a

manifold. On a complex manifold, in addition to smooth differential forms, there are holomorphic

differential forms that also define sheaves on the manifold. Cohomology with coefficients in the

sheaf Ωp of holomorphic p-forms gives invariants of the complex structure. Sheaves have become

absolutely essential in modern algebraic geometry as well as certain areas of topology and complex

analysis.

1. PRESHEAVES

The functor A∗ that assigns to every open set U on a manifold the vector space of C∞ forms on

U is an example of a presheaf. By definition a presheaf F of abelian groups on a topological space

X is a function that assigns to every open set U in X an abelian group F(U) and to every inclusion

of open sets iVU : V →U a group homomorphism F(iVU ) := ρU
V , called the restriction from U to V ,

ρU
V : F(U)→ F(V ),

such that the system of restrictions ρU
V satisfies the following properties:

(i) (identity) ρU
U = 1F(U), the identity map on F(U);

(ii) (transitivity) if W ⊂V ⊂U , then ρV
W ◦ ρU

V = ρU
W .

We refer to elements of F(U) as sections of F over U . The group F(U) is also written Γ(U,F).
Elements of Γ(X ,F) are called global sections of F.

If F and G are presheaves on X , a morphism f : F → G of presheaves is a collection of group

homomorphisms fU : F(U)→ G(U), one for each open set U in X , that commute with the restric-

tions, i.e., such that each diagram

F(U)
fU //

ρU
V

��

G(U)

ρU
V

��
F(V )

fV

// G(V )

(1.1)

is commutative. Although we write both vertical maps as ρU
V , they are in fact not the same map;

the first one is F(iVU ) and the second is G(iVU). If we write ω |U for ρU
V (ω), then the diagram (1.1)

is equivalent to fV (ω |V ) = fU(ω)|V for all ω ∈ F(U). In practice, we often omit the subscripts in

fU and fV and write them simply as f .

February 27, 2014. I am indebted to Jeffrey D. Carlson for his detailed comments on the first few drafts and to

George Leger for helpful discussions.
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For any topological space X , let Open(X) be the category in which the objects are open subsets

of X and for any two open subsets U , V of X , the set of morphisms from V to U is

Hom(V,U) :=

{

{inclusion iVU : V →U} if V ⊂U,

the empty set ∅ otherwise.

In functorial language, a presheaf of abelian groups is simply a contravariant functor from the

category Open(X) to the category of abelian groups, and a morphism of presheaves is a natural

transformation from the functor F to the functor G. What we have defined are presheaves of

abelian groups; it is possible to define similarly presheaves of vector spaces, of algebras, and

indeed of objects in any category, but all the presheaves that we consider will be presheaves of

abelian groups.

Example 1.1. The zero presheaf F on a topological space X associates to every open set U the

zero group F(U) = 0 and to every inclusion V ⊂U the zero map F(U)→ F(V ).

Example. If G is an abelian group, we define the presheaf of locally constant G-valued functions

on X (constant on connected components) to be the presheaf G that associates to every open set U

in X the group

G(U) := {locally constant functions f : U → G}

and to every inclusion of open sets V ⊂ U the restriction ρU
V : G(U)→ G(V ) of locally constant

functions.

2. THE STALK OF A PRESHEAF

On a smooth manifold M, the function that assigns to every open set U ⊂ M the group C∞(U) of

C∞ real-valued functions on U is a presheaf. As we know from manifold theory, the behavior of C∞

functions at a point is encoded in the the germs of the functions at the point. The corresponding

notion for a presheaf is the stalk of the presheaf at a point. To define the stalk, we recall an

algebraic construction called the direct limit of a direct system of groups.

A directed set is a set I with a binary relation ≤ satisfying

(i) (reflexivity) for all a ∈ I, a ≤ a,

(ii) (transitivity) for all a,b,c ∈ I, if a ≤ b and b ≤ c, then a ≤ c,

(iii) (upper bound) for all a,b ∈ I, there is an element c ∈ I, called an upper bound of a and b,

such that a ≤ c and b ≤ c.

We often write b ≥ a if a ≤ b.

A direct system of groups is a collection of groups {Gi}i∈I indexed by a directed set I and a

collection of group homomorphisms f a
b : Ga → Gb indexed by pairs a ≤ b in I such that

(i) f a
a = 1Ga

, the identity map on Ga,

(ii) f a
c = f b

c ◦ f a
b for a ≤ b ≤ c in I.

On the disjoint union
∐

i Gi we introduce an equivalence relation ∼ by decreeing two elements

ga in Ga and gb in Gb to be equivalent if there exists an upper bound c of a and b such that

f a
c (ga) = f b

c (gb) in Gc. The direct limit of the direct system, denoted by lim
−→i∈I

Gi, is the quotient

of the disjoint union
∐

i Gi by the equivalence relation ∼; in other words, two elements of
∐

i Gi

represent the same element in the direct limit if they are “eventually equal.” We make the direct

limit lim
−→

Gi into a group by defining [ga]+[gb] = [ f a
c (ga)+ f b

c (gb)], where c is an upper bound of a

and b and [ga] is the equivalence class of ga. It is easy to check that the addition + is well defined

and that with this operation the direct limit lim
−→

Gi becomes a group; moreover, if all the groups Gi



INTRODUCTION TO SHEAVES 3

are abelian, then so is their direct limit. Instead of groups, one can obviously also consider direct

systems of modules, rings, algebras, and so on.

Example. Fix a point p in a manifold M and let I be the directed set consisting of all neighborhoods

of p in M, with ≤ being reverse inclusion: U ≤ V if and only if V ⊂ U . Let C∞(U) be the

ring of C∞ functions on U . Then {C∞(U)}U∋p is a direct system of rings and its direct limit

C∞
p := lim

−→U∋p
C∞(U) is precisely the ring of germs of C∞ functions at p.

If F is a presheaf of abelian groups on a topological space X and p is a point in X , then

{F(U)}U∋p, where U ranges over all open neighborhoods of p, is a direct system of abelian

groups. The direct limit Fp := lim
−→U∋p

F(U) is called the stalk of F at p. An element of the stalk

Fp is called a germ of sections at p. For example, the ring C∞
p is the stalk at p of the presheaf

C∞( ) of C∞ functions on the manifold M.

A morphism of presheaves ϕ : F → G over a topological space X induces a morphism of stalks

ϕp : Fp → Gp at each p ∈ X by sending the germ at p of a section s ∈ F(U) to the germ at p of the

section ϕ(s) ∈ G(U). The morphism ϕp : Fp → Gp of stalks is also called the stalk map at p.

3. SHEAVES

The stalk of a presheaf at a point embodies in it the local character of the presheaf about the

point. However, in general there is no relation between the global sections and the stalks of a

presheaf.

Example 3.1. If G is an abelian group and F is the presheaf on a topological space X defined by

F(X) = G and F(U) = 0 for all U 6= X , then all the stalks Fp vanish, but F is not the zero presheaf.

A sheaf is a presheaf with two additional properties that link the global and local sections of

the presheaf. In practice, most of the presheaves one encounters are sheaves. Unlike the example

in the preceding paragraph, a sheaf all of whose stalks vanish has no nonzero global sections

(Example 5.2).

Definition 3.2. A sheaf F of abelian groups on a topological space X is a presheaf satisfying two

additional conditions for any open set U ⊂ X and any open cover {Ui} of U :

(i) (uniqueness axiom) if s, t ∈ F(U) are sections such that s|Ui
= t|Ui

for all i, then s = t;

(ii) (gluing axiom) if {si ∈ F(Ui)} is a collection of sections such that

si|Ui∩U j
= s j|Ui∩U j

for all i, j,

then there is a section s ∈ F(U) such that s|Ui
= si for each i.

Suppose there is an ordering on the index set I of the open cover {Ui}i∈I , and consider the

sequence of maps

0 → F(U)
r
→ ∏

i

F(Ui)
δ
→ ∏

i< j

F(Ui ∩U j), (3.1)

where r is the restriction r(ω)i = ω |Ui
and δ is the Čech coboundary operator

(δω)i j := ω j|Ui j
−ωi|Ui j

.

Then the two sheaf axioms (i) and (ii) are equivalent to the exactness of the sequence (3.1) at F(U)
and at ∏iF(Ui), respectively; i.e., the map r is injective and kerδ = imr.
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Example. For any open subset U of a topological space X , let F(U) be the abelian group of con-

stant real-valued functions on U . If V ⊂U , let ρU
V : F(U)→ F(V ) be the restriction of functions.

Then F is a presheaf on X . Suppose X has nonempty disjoint subsets (for example, X = R
n with

the standard topology). Then the presheaf F satisfies the uniqueness axiom but not the gluing

axiom of a sheaf: if U1 and U2 are disjoint open sets in X , and s1 ∈ F(U1) and s2 ∈ F(U2) have

different values, then there is no constant function s on U1 ∪U2 that restricts to s1 on U1 and to s2

on U2.

Example. Let R be the presheaf on a topological space X that associates to every open set U ⊂ X

the abelian group R(U) consisting of all locally constant real-valued functions on U . Then R is a

sheaf. More generally, if G is an abelian group, then the presheaf G of locally constant functions

with values in G is a sheaf, called the constant sheaf with values in G.

Example. The zero presheaf 0 on a topological space in Example 1.1 is a sheaf.

Example. The presheaf Ak on a manifold that assigns to each open set U the abelian group of C∞

k-forms on U is a sheaf.

Example. The presheaf Zk on a manifold that associates to each open set U the abelian group of

closed C∞ k-forms on U is a sheaf.

4. THE SHEAF ASSOCIATED TO A PRESHEAF

Associated to a presheaf F on a topological space X is another topological space EF, called the

étalé space of F. As a set, the étalé space EF is the disjoint union
∐

p∈X Fp of all the stalks of

F. There is a natural projection map π : EF → X that maps Fp to p. A section of the étalé space

π : EF → X over U ⊂ X is a map s : U → EF such that π ◦ s = 1U , the identity map on U . For any

open set U ⊂ X , element s ∈ F(U), and point p ∈ U , let sp ∈ Fp be the germ of s at p. Then the

element s ∈ F(U) defines a section s̃ of the étalé space over U ,

s̃ : U → EF,

p 7→ sp ∈ Fp.

The collection

{s̃(U) |U open in X , s ∈ F(U)}

of subsets of EF satisfies the conditions to be a basis for a topology on EF. With this topology, the

étalé space EF becomes a topological space. By construction, the topological space EF is locally

homeomorphic to X . For any element s ∈ F(U), the function s̃ : U → EF is a continuous section

of EF. A section t of the étalé space EF is continuous if and only if every point p ∈ X has a

neighborhood U such that t = s̃ on U for some s ∈ F(U).
Let F+ be the presheaf that associates to each open subset U ⊂ X the abelian group

F
+(U) := {continuous sections t : U → EF}.

Under pointwise addition the presheaf F+ is easily seen to be a sheaf, called the sheafification or

the associated sheaf of the presheaf F. There is an obvious presheaf morphism θ : F → F+ that

sends a section s ∈ F(U) to the section s̃ ∈ F+(U).

Example. For an open set U in a topological space X , let F(U) be the group of all constant real-

valued functions on U . At each point p ∈ X , the stalk Fp is R. The étalé space EF is X ×R, but
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not with its usual topology. A set in EF is open if and only if it is of the form U ×{r} for an open

set U ⊂ X and a number r ∈ R. Thus, the topology on EF = X ×R is the product of the given

topology on X and the discrete topology on R. The sheafification F+ is the sheaf R of locally

constant real-valued functions.

EXERCISE 4.1 Prove that if F is a sheaf, then F=F+. (Hint: Show that every continuous section

t : U → EF is s̃ for some s ∈ F(U).)

Proposition 4.2. For every sheaf G and every presheaf morphism ϕ : F → G, there is a unique

sheaf morphism ϕ+ : F+ → G such that the diagram

F+

ϕ+

  ❅
❅

❅

❅

F

θ

OO

ϕ
// G

(4.1)

commutes.

PROOF. The proof is straightforward and is left as an exercise. �

5. SHEAF MORPHISMS

Recall that all our sheaves are sheaves of abelian groups. A morphism ϕ : F → G of sheaves,

also called a sheaf map, is by definition a morphism of presheaves. If ϕ : F→ G is a morphism of

sheaves, then the presheaf kernel

U 7→ ker
(

ϕU : F(U)→ G(U)
)

is a sheaf, called the kernel of ϕ and written kerϕ . The presheaf image

U 7→ im
(

ϕU : F(U)→ G(U)
)

,

however, is not always a sheaf. The image of ϕ , denoted imϕ , is defined to be the sheaf associated

to the presheaf image of ϕ .

A sheaf F over a space X is a subsheaf of a sheaf G if for every open set U in X the group F(U)
is a subgroup of G(U), and the inclusion map i : F→ G is a presheaf morphism. If F is a subsheaf

of G, the quotient sheaf is defined to be the sheaf associated to the presheaf U 7→ G(U)/F(U).
A morphism of sheaves ϕ : F→ G is said to be injective if kerϕ = 0, and surjective if imϕ = G.

Proposition 5.1.

(i) A morphism of sheaves ϕ : F → G is injective if and only if the stalk map ϕp : Fp → Gp is

injective for every p.

(ii) A morphism of sheaves ϕ : F → G is surjective if and only if the stalk map ϕp : Fp → Gp

is surjective for every p.

PROOF. Exercise (see [4, Exercise 1.2 (a),(b), p. 66]). �

In this proposition, neither (i) nor (ii) are true for morphisms of presheaves. A counterexample

to (i) is F= the presheaf of Example 3.1 and G= 0; a counterexample to (ii) is F= 0 and G= the

presheaf of Example 3.1. It is the truth of the proposition for sheaves that makes sheaves so much

more useful than general presheaves.
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Example 5.2. If the stalk Fp of a sheaf F vanishes for every p ∈ X , then by Proposition 5.1, the

sheaf map F → 0 is both injective and surjective, since the stalk maps Fp → 0p are injective and

surjective for all p ∈ X . Hence, F is isomorphic to the zero sheaf and has no nonzero global

sections.

6. EXACT SEQUENCES OF SHEAVES

A sequence of sheaves

· · · −→ F
1 d1−→ F

2 d2−→ F
3 d3−→ ·· ·

on a topological space X is said to be exact at Fk if imdk−1 = kerdk; the sequence is said to be

exact if it is exact at every Fk. By Proposition 5.1, the exactness of a sequence of sheaves on X is

equivalent to the exactness of the sequence of stalk maps at every point p ∈ X . An exact sequence

of sheaves of the form

0 → E→ F → G→ 0 (6.1)

is said to be a short exact sequence. The exactness of a sequence of groups is defined in the same

way.

It is not too difficult to show that the exactness of the sheaf sequence (6.1) over a topological

space X implies the exactness of the sequence of sections

0 → E(U)→ F(U)→ G(U) (6.2)

for every open set U ⊂ X , but the last map F(U) → G(U) need not be surjective. In fact, as we

see in [1, Theorem 2.8], the cohomology H1(U,E) is a measure of the nonsurjectivity of the map

of global sections F(U)→ G(U).
Fix an open subset U of a topological space X . To every sheaf F on X , we can associate the

abelian group Γ(U,F) := F(U) of sections over U and to every sheaf map ϕ : F → G, the group

homomorphism ϕU : Γ(U,F) → Γ(U,G). This makes Γ(U, ) a functor from sheaves to abelian

groups.

Example. Let O be the sheaf of holomorphic functions on the complex plane C and O∗ the sheaf

of nowhere-vanishing holomorphic functions on C. For any open set U ⊂ C, if f ∈ O(U), then

exp2πi f ∈ O∗(U). The kernel of the sheaf map exp2πi( ) on any open set U consists of the

holomorphic (hence locally constant) integer-valued functions on U . Hence, there is an exact

sequence of sheaves

0 → Z→ O→ O∗ → 0.

The surjectivity of O → O∗ follows from the fact that if U is simply connected and f ∈ O∗(U),
then f (U) is a simply connected set in C not containing the origin, and hence log f is defined on

U .

If U is the punctured plane C−{0}, then the exponential map

exp2πi( ) : O(U)→ O∗(U)

is not surjective, since it is not possible to define its inverse, (1/2πi) log, on C−{0}: for example,

logz = log(reiθ ) must be defined as (log r)+ iθ , but the angle θ cannot be defined as a continuous

function around a puncture at the origin.

A functor F from the category of sheaves on X to the category of abelian groups is said to be

exact if it maps a short exact sequence of sheaves

0 → E→ F → G→ 0
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to a short exact sequence of abelian groups

0 → F(E)→ F(F)→ F(G)→ 0.

If instead one has only the exactness of

0 → F(E)→ F(F)→ F(G),

then F is said to be a left-exact functor. Thus, the sections functor Γ(U, ) is left-exact but not

exact.

7. RESOLUTIONS

Recall that R is the sheaf of locally constant functions with values in R and Ak is the sheaf of C∞

k-forms on a manifold M. For every open set U in M, the exterior derivative d : Ak(U)→Ak+1(U)
induces a morphism of sheaves d : Ak →Ak+1.

Proposition 7.1. On any manifold M of dimension n, the sequence of sheaves

0 → R→ A
0 d
→A

1 d
→ ···

d
→A

n → 0 (7.1)

is exact.

PROOF. Exactness at A0 is equivalent to the exactness of the sequence of stalk maps Rp →A0
p

d
→

A1
p for all p ∈ M. Fix a point p ∈ M. Suppose [ f ] ∈ A0

p is the germ of a C∞ function f : U → R,

where U is a neighborhood of p, such that d[ f ] = [0] in A1
p. Then there is a neighborhood V ⊂U

of p on which d f ≡ 0. Hence, f is locally constant on V and [ f ] ∈ Rp. Conversely, if [ f ] ∈ Rp,

then d[ f ] = 0. This proves the exactness of the sequence (7.1) at A0.

Next, suppose [ω ] ∈ Ak
p is the germ of a C∞ k-form on some neighborhood of p such that

d[ω ] = 0 ∈ Ak+1
p . This means there is a neighborhood V of p on which dω ≡ 0. By making

V smaller, we may assume that V is contractible. By the Poincaré lemma, ω is exact on V , say

ω = dτ for some τ ∈Ak−1(V ). Hence, [ω ] = d[τ ]. �

In general, an exact sequence of sheaves

0 → A→ F
0 → F

1 → F
2 → ···

on a topological space X is called a resolution of the sheaf A. On a complex manifold M of

complex dimension n, the analogue of the Poincaré lemma is the ∂̄ -Poincaré lemma [3, p. 25],

from which it follows that for each fixed integer p ≥ 0, the sheaves Ap,q of C∞ (p,q)-forms on M

give rise to a resolution of the sheaf Ωp of holomorphic p-forms on M:

0 → Ωp →A
p,0 ∂̄

→A
p,1 ∂̄

→ ···
∂̄
→A

p,n → 0. (7.2)

The cohomology of the Dolbeault complex

0 →Ap,0(M)
∂̄
→ Ap,1(M)

∂̄
→ ···

∂̄
→Ap,n(M)→ 0

is by definition the Dolbeault cohomology of the complex manifold M. (For (p,q)-forms on a

complex manifold, see [3].)
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