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General Algebraic Equation

Reduced equation

yn + xsy
ns + · · ·+ x1y

n1 − 1 = 0, (1)

where 0 = n0 < n1 < · · · < ns < ns+1 = n, x = (x1, . . . , xs) ∈ Cs .

Principal solution

y(x) = y(x1, . . . , xs), y(0) = 1;

denote it by y0(x).

Other branches

yj(x) = εjy(x1ε
jn1 , . . . , xsε

jns ), j = 1, . . . , n − 1, ε = e
2πi
n .
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Mellin’s Formula (1921)

Hypergeometric type series for yµ0 (x), µ > 0:

yµ0 (x) =
µ

n

∑
k∈Zs

>

(−1)|k|Γ
(µ
n + n1

n k1 + . . .+ ns
n ks
)

k!Γ

(
µ
n −

n
′
1
n k1 − · · · − n′s

n ks + 1
)xk1

1 . . . xkss , (2)

where k = (k1, . . . , ks), n
′
j = n − nj , k! = k1! · . . . · ks !.
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Example

Consider the cubic equation

y3 + xy − 1 = 0.

According to [Mellin, 1921] the principal solution can be
represented by the integral

y0(x) =
1

2πi

∫
γ+iR

1
3Γ(1

3 −
1
3z)Γ(z)

Γ(1
3 + 2

3z + 1)
x−zdz , (3)

which converges in the sector S = {x : | arg x | < π
3 }.
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Example

Calculate the integral (3) as the sum of residues at poles z = −k ,
k = 0, 1, . . . , of the function Γ(z):

y0(x) =
1
3

∞∑
k=0

(−1)kΓ(1
3 + 1

3k)

Γ(4
3 −

2
3k)k!

xk , |x | < 3
3
√

4
. (4)

Calculate (3) as the sum of residues at poles s = 1 + 3k ,
k = 0, 1, . . ., of the function Γ(1

3 −
1
3z):

y(x) =
1
x

∞∑
k=0

Γ(1 + 3k)

Γ(2 + 2k)k!

1
(−x)3k , |x | >

3
3
√

4
. (5)
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Example

The negative power of the principal solution can be represented by
the integral

1
yµ(x)

=
1

2πi

∫
γ+iR

µ
3 Γ(z)Γ(µ3 −

z
3)

Γ(µ3 + 1 + z
3)

(−x)−zdz , µ > 0, (6)

which converges in the sector S
′

= {x : π
3 < arg x < 5π

3 }.
Remark that

y(x) = − x

y(x)
+

1
y(x)2 . (7)

y(x) =
1
2

(−x)
1
2

∞∑
k=0

Γ(1
2 −

1
2k)

Γ(3
2 −

3
2k)k!

(
−1
x

) 3
2k

, |x | > 3
3
√

4
. (8)
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Example
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Subdivision, Newton Polytope and Amoeba

Equation (1) is defined by the set of exponents {0, n1, . . . , ns , n} of
its monomials.

A subdivision τ of the integer line segment [0, n] is a collection
of adjacent subsegments obtained by dividing the original
segment at points of some subset of {n1, . . . , ns}.

The Newton polytope Nf of a polynomial f is the convex hull
of the set of exponent vectors of its monomials, with these
vectors being considered as integer lattice points in the
corresponding real vector space.
The amoeba A of a polynomial is the image of its zero locus
under the mapping

Log : (x1, . . . , xs)→ (log |x1|, . . . , log |xs |).
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Bijections

Let us introduce the following notations:
∇ = {∆(x) = 0} is the discriminant locus of (1),
N∆ is the Newton polytope of ∆(x),
A∇ is the amoeba of the discriminant locus.

[Gelfand-Kapranov-Zelevinsky, 1994]

There exist bijections between the following sets:

{τ} ↔ {vτ} ↔ {Eτ},

where τ is a subdivision of the segment [0, n], vτ is a vertex of the
Newton polytope N∆, Eτ is a component of the amoeba A∇
complement.
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Puiseux Series

Theorem 1 [A.– Mikhalkin, 2012]

For any ordered pair p, q ∈ {0, 1, . . . , s + 1}, the series yµ0 (x)
admits an analytic continuation in the form of the
(nq − np)-valued Puiseux series yµp,q(x).

The domain of convergence Dp,q of the series contains all the
domains Log−1(Eτ ) for which the subdivision τ contains the
segment [np, nq].
In each domain Log−1(Eτ ), exactly n series yµp,q(x) converge if
one takes into account that each series is (nq − np)-valued.

Remark: for the pair p = 0, q = s + 1, the series coincides with
the principal solution (2).
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Discriminant Amoeba
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Proof of Theorem 1

We consider the general algebraic equation

as+1y
n + asy

ns + · · ·+ a1y
n1 + a0 = 0, (9)

with complex coefficients a = (a0, . . . , as+1). Its root y(a) has a
double homogeneity property.
It is enough to be able to solve equations of the type

rs+1y
ns+1 + · · ·+ ynq + · · · − ynp + · · ·+ r0y

n0 = 0 (10)

where ns+1 = n, n0 = 0.
Let denote by τp,q(r) Taylor series solutions to (10) [Birkeland,
1927].
Series τp,q(r) may be turned into Puiseux series solutions to (9) by
a monomial substitution r = r(a).
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Proof of Theorem 1

The equation (1) is a result of (0, s + 1) – dehomogenization of (9):

yn + xsy
ns + · · ·+ x1y

n1 − 1 = 0.

The series τp,q(r) (y(0)=1) may be turned into Puiseux series
yp,q(x) by monomial substitutions r = r(x).

[Passare–Tsikh, 2004]

The domain of convergence D
′
p,q of the series τp,q(r) is a complete

Reinhardt domain with the property that the domain Log(D
′
p,q)

contains all the connected components of the set Rs \ A∇p,q that
are associated with subdivisions of [0, n] containing the segment
[np, nq].

The amoeba A∇ is a result of the affine transformation of the
amoeba A∇p,q .
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Immediate Analytic Continuation

Consider the mapping

Arg : (C \ 0)sx → Rs
θ

defined by the formula

Arg : (x1, . . . , xs)→ (arg x1, . . . , arg xs),

where θj = arg xj .
Introduce sectorial domains

S = Arg−1
{
|θν | <

πnν
n
, ν ∈ I , |njθk − nkθj | < πnj , j , k ∈ I , j < k

}
,

S
′

= Arg−1

{
|θν + π| < πn

′
ν

n
, ν ∈ I , |n′

k(θj + π)− n
′
j(θk + π)| < πn

′
k ,

j , k ∈ I , j < k} , I = {1, . . . , s}.
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Immediate Analytic Continuation

Theorem 2 [A.– Mikhalkin, 2012]

The series y0,q is a result of analytic continuation of the principal
solution y0 from the domain D0,s+1 to D0,q through the sectorial
domain S , and yp,s+1 is a result of analytic continuation of y0 from
D0,s+1 to Dp,s+1 through the sectorial domain S

′
.

Mellin’s integral formula [A., 2007]

yµ0 (x) =
1

(2πi)s

∫
γ+iRs

µ
nΓ
(µ
n −

1
n 〈α, z〉

)
Γ(z1) . . . Γ(zs)

Γ
(µ
n + 1

n 〈β, z〉+ 1
) x−zdz ,

(11)
where α = (n1, . . . , ns), β = (n − n1, . . . , n − ns) and

γ ∈ {u ∈ Rs
+ : 〈α, u〉 < µ}.

Integral (11) converges in the sectorial domain S .
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Immediate Analytic Continuation

Integral representation for 1/yµ0 (x)

1
yµ0 (x)

=
1

(2πi)s

∫
γ+iRs

µ
nΓ
(µ
n −

1
n 〈β, z〉

)
Γ(z1) . . . Γ(zs)

Γ
(µ
n + 1

n 〈α, z〉+ 1
) (−x)−zdz ,

(12)
where

γ ∈ {u ∈ Rs
+ : 〈β, u〉 < µ}.

Integral (12) converges in the sectorial domain S
′
.

Remark: y(x) satisfies the equation

y(x) = − xs
yn−ns−1(x)

− · · · − x1

yn−n1−1 +
1

yn−1(x)
.
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Separating Cycle Principle [Tsikh, 1992]

Grothendieck-type integral

1
(2πi)s

∫
∆g

h(z)dz

f1(z) . . . fs(z)
, (13)

where
f = (f1, . . . , fs) : Cs → Cs is a holomorphic proper mapping,
∆g is the skeleton of a polyhedron Πg associated with a
holomorphic proper mapping g = (g1, . . . , gs) : Cs → Cs ,
the polyhedron Πg is g−1(G1 × · · · × Gs), Gj ⊂ C,
σj = {z : gj(z) ∈ ∂Gj , gk(z) ∈ Gk , k 6= j}, j ∈ I are facets of
Πg ,
Dj = {fj(z) = 0}, j ∈ I are polar divisors.
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Separationg Cycle Principle

Definition
A polyhedron Πg is said to be compartible with the set of divisors
{Dj}, if for each j the corresponding facet σj of the polyhedron Πg

does not intersect the divisor Dj .

Assume that the intersection Z = D1 ∩ · · · ∩ Ds is discrete.

Theorem
If the polyhedron Πg is bounded and compartible with the family of
polar divisors {Dj}, then the integral (13) equals to the sum of
Grothendieck residues in the domain Πg .

Remark: in the case of unbounded polyhedron, one needs to
require that the integrand form should decrease sufficiently fast in
Πg . These conditions are described in the multidimensional
abstract Jourdan lemma [Passare-Tsikh-Zhdanov, 1994].
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Implementation of SCP for Mellin-Barnes Integrals

We interpret the integration subspace γ + iRs as the skeleton
of a polyhedron.
For s > 1 this subspace may serve as the skeleton for infinitely
many polyhedra.

We consider polyhedra of the type

Πg = {z ∈ Cs : Re gj(z) < rj , j ∈ I},

where gj(z) are linear functions with real coefficients.
The polyhedron Πg = π + iRs where π is the s-dimensional
simplicial cone in Rs .
The polar set for integrand in (11) consists of s + 1 families of
hyperplanes

Dj = {zj = −ν, ν ∈ Z>}, Ds+1 =

{
µ

n
− 1

n
〈β, z〉 = −ν, ν ∈ Z>

}
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Implementation of SCP for Mellin-Barnes Integrals

There exist s + 1 cones π0, π1, . . . , πs with vertices at γ such that
Π0 = π0 + iRs is compartible with the set of divisors
D1, . . . ,Ds ,
Πj = πj + iRs is compartible with the set of divisors
D1, . . . [j ] . . . ,Ds ,Ds+1.

According to the SCP we have s + 1 residue formulas for the
Mellin–Barnes integral (12) which give series yp,s+1.
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Horn-Kapranov parameterization of ∇ [Passare-Tsikh, 2004]

Consider the general algebraic equation

yn + xn−1y
n−1 + · · ·+ x1y − 1 = 0, (14)

y0(x), y0(0) = 1, yj(x).
The discriminant locus ∇ of the equation (14) admits the
parameterization Ψ : CPn−2

s → Cn−1
x given by the formula

xk = Ψk(s) =
nsk
〈α, s〉

(
−〈α, s〉
〈β, s〉

) k
n

, k = 1, . . . , n − 1, s ∈ CPn−2.

(15)
Let D be the convergence domain of the series y0(x). The surface

|xk | = |Ψk(s)| , k = 1, . . . , n, s ∈ Rn−1
+ , (16)

gives the boundary ∂|D| of the image |D| on the Reinhardt
diagramm.
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Strings

Definition

The string S(j) is said to be the surface

S(j) :=
{

Ψ(j)(s) : s ∈ Rn−1
+

}
⊂ ∇, j = 0, . . . , n − 1,

where Ψ(j)(s) is a branch of the parameterization (15) with the
condition

arg

(
−〈α, s〉
〈β, s〉

) 1
n

= −π
n

(1 + 2j).
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Monodromy of the general algebraic function

Theorem 3 [Mikhalkin, 2015]

When extending through the boundary ∂D of the domain D, any
branch yj(x) of the solution to (14) has the second order
ramification on strings S(j) and S(j−1). The branch yj(x) going
around the string S(j) turns to the branch yj+1(x) and going
around the string S(j−1) turns to the branch yj−1(x).

Irina Antipova
Analytic continuations of algebraic functions by means of Mellin-Barnes integrals



Polynomial systems

Universal polynomial system
Consider a system of n polynomials∑

α∈A(i)

a(i)
α yα = 0, i ∈ I := {1, . . . , n}, (17)

with unknown y = (y1, . . . , yn) ∈ (C \ 0)n, variable coefficients a(i)
α ,

where A(i) ⊂ Zn are fixed subsets and yα = yα1
1 · . . . · yαn

n is a
monomial.

The solution y(a) = (y1(a), . . . , yn(a)) is a multivalued algebraic
vector-function with a polyhomogeneity property.
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Polynomial systems

Reduced polynomial system
Consider the system of n polynomials

yω
(i)

+
∑
λ∈Λ(i)

x
(i)
λ yλ − 1 = 0, i ∈ I , (18)

with variable coefficients x (i)
λ , where Λ(i) := A(i) \ {ω(i), 0} and a

matrix ω = (ω(i)) is nondegenerate.

Denote by Λ the disjunctive union of sets Λ(i), ]Λ = N,
Λ =

(
λ1, . . . , λN

)
, ϕj are rows of the matrix Λ.
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Mellin–Barnes Integral Representation for y d(x)

Monomial function for the principal solution to (18), yi (0) = 1

yd(x) := yd1
1 (x) · . . . · ydnn (x), d = (d1, . . . , dn) ∈ Rn

+. (19)

Theorem 4 [A., 2003],[Stepanenko, 2003]

1

(2πi)N

∫
γ+iRN

n∏
j=1

∏
λ∈Λ(j)

Γ
(
z

(j)
λ

)
Γ
(

dj
ωj
− 1

ωj
〈ϕj , z〉

)
Γ
(

dj
ωj
− 1

ωj
〈ϕj , z〉+ zj + 1

) Q(z)x−z dz

γ ∈ U = {u ∈ RN
+ : 〈ϕj , u〉 < dj , j ∈ I},

Q(z) =
1

detω
det
∣∣∣∣∣∣δji (dj − 〈ϕj , z〉) + 〈ϕ(i)

j , z(i)〉
∣∣∣∣∣∣
i ,j∈I

,

δji is the Kronecker symbol and ω = diag[ω1, . . . , ωn].
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Convergence domains of the M-B integral

Consider the family of matrices(
λ(1), . . . , λ(n)

)
, λ(j) ∈ Λ(j). (20)

A minor of the matrix is said to be the principal minor if the set of
numbers of distinguished rows coincides with the set of numbers of
distinguished columns.

Theorem 5 [Kulikov, 2017]

The M-B integral associated to the solution to the system of
polynomial equations has a nonempty convergence domain iff all
the principal minors of all matrices (20)are positive.
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Example

Consider the system of equations{
y4
1 + x1y

2
1 y2 − 1 = 0,

y4
2 + x2y1y

2
2 − 1 = 0.

(21)

The Mellin-Barnes integral is as follows

1
(2πi)2

∫
γ+iR2

Γ(z1)Γ(z2)Γ
(1

4 −
1
2z1 −

1
4z2
)

Γ
(1

4 −
1
4z1 −

1
2z2
)

Γ
(5

4 + 1
2z1 −

1
4z2
)

Γ
(5

4 −
1
4z1 + 1

2z2
)

(1− z1 − z2)

16
x−zdz .

It converges in the sectorial domain Arg−1(Θ), where

Θ =

{
|θ1| <

π

2
, |θ2| <

π

2
, |2θ2 − θ1| <

3π
4
, |θ2 − 2θ1| <

3π
4

}
.
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Polar divisors
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Discriminant Amoeba
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Puiseux Series

Theorem 6 [A-Kleshkova-Kulikov, 2020]

For any collection of n couples µ(i), ν(i) ∈ A(i) with the
nondegeneracy condition of the matrix

κ =
(
κ(i)
j

)
=
(
µ

(i)
j − ν

(i)
j

)
there exist an analytic continuation of the Taylor series for the
monomial yd(x) of the principal solution to the system (18)

yω
(i)

+
∑
λ∈Λ(i)

x
(i)
λ yλ − 1 = 0, i ∈ I ,

in the form of the Puiseux series.
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