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Background

The A-hypergeometric system .7°(A; () is a system of PDE’s whose
solutions are meromorphic functions on the affine space C4.

The principal symbol of J#(A4; ) is the principal A-determinant
E,qCcCA..

...and we have a monodromy representation

M(B): T (CAN\ Eq;w) — Mu(B).
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Monodromy of A-hypergeometric functions

By Frits Beukers at Utrecht

Abstract. Using Mellin—Bames integrals we give a method to compute elements of the
monodromy group of an A-hypergeometric system of differential equations. The method works
under the assumption that the A-hypergeometric system has a basis of solutions consisting of
Mellin—Barnes integrals. Hopefully these elements generate the full monodromy group. but

—h— g s’ - A )

this has only been verified in some special cases.
M(B): m(CH\ Easw) — Ma(B).
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Problems:

» Does there exist a Mellin—Barnes basis of solutions?

» Is the fundamental group generated by amoebic paths?

Series

M-B a1 = T

Fy, Go

Fy, F3, Hy
G4, Hs, Hg
Hy

Hy, H7

T

T

G
Hs

Fy
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Amoebas

RE Log ((C*)k Arg

Definition
Let Z C (C*)*. Then, the amoeba of Z is the projection

A(Z) = Log(2),

and the coamoeba of Z is the projection

C(Z) = Arg(Z).
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Amoebas

Definition 1.4, The amaeba of a Laurent polynomial f isthe subsetlog(Z,) R,

This name is motivated by the following typical shape of log(Z,) in two
dimensions (sce Figure 16).

Figure 16. Amoeba

This shape is peculiar because of the thin “tentacles™ going off to infinity, A
bit later we shall give rigorous statements showing that the behavior of log(Z;) is
indeed typical. But first we relate the amoeba to the problem of finding Laurent
series expansions for the rationa function 1/f(x). Recall the general properties.

of Laurent series in several variables and their regions of convergence, see e.g.,
[Kr].

from [Gelfand—Kapranov—Zelevinsky]
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Mellin Transforms of Multivariate Rational Functions
Lisa Nilsson - Mikael Passare

Theorem 4 For any connected component E of the coamoeba complement R \ A’
there is an integral representation

1
f(2)

= f Mf".;,‘(,\):_"' ds, (19)
a+iR" £

which converges for all 7 in the domain Arg="(E). Here o is an arbitrary point in
int Ay and

g 1 ' dz 1 x kil
ME (5) = —— f i f L __dx, 0
/ QT Jargtoy S@) 2 Q@i Jge f(e¥HiO)

with 6 being an arbitrary point in the component E.
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Amoebas

Amoebas are one part algebraic and one part combinatorial.

f(z1,22) =14 21+ 29

A Z N

Theorem (Forsberg—Passare—Tsikh)
Let f € C[z1,...,2k], with Newton polytope N'. Then, there is a map

ords: mo(R™\ A) — N NZ~.
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AMOEBAS, MONGE-AMPERE MEASURES, AND
TRIANGULATIONS OF THE NEWTON POLYTOPE

MIKAEL PASSARE and HANS RULLGARD

Figure 1. Amocbd of the polynomial
1+ _71 + 8[)"") -+ 40” '; +z l”" (shddcd) together with its spine
(solid) dl‘ld the dual triangulation of the Newton polytope
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Amoebas

Coamoebas are one part algebraic and one part combinatorial.

f(z1,22) =1+ 21 + 22

R
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Amoebas

The A in “A-hypergeometric” stands for the support set of the
quasi-homogenization fp,(z0,2) = 20 f(2).

Gale duality: AB = 0.

f(z1,22) = 14 27 + 80 2729 + 40 2323 + 23 25.

2 4

11 1 11 1 1
A=|10 5 2 3 3 and B=| -4 -10
001 2 4 0 )

1 0

The dimension is n = rank(A) — 1 and the codimension is m = rank(B).

rd (Utrecht University) 18 February 2020 11 / 32



Amoebas

Let A= {a1,...,ay} with Gale dual B" = {f1,...,8n}, and consider
the Zonotope

I\ <1 } C R™.

N
z:{ 2;)\1‘,3@

Theorem (F. & Johansson)
Let f € Clz1,. .., 2], with dual zonotope Z. Then, there is a map

corg: Z2°N (& +27Z™) < mo((S)™\ C).
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Fundamental Groups

Rk Log ((C* ) k Arg

Let Z C (C*)* be fixed. We write
A=A(Z) and C=C(Z).

For z € RF, let

C. =C(ZNLog '(x)).
For t € (S1)*, let

Ay = A(Z N Arg ™ (t)).
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Fundamental Groups

Each = € R¥ defines an inclusion
o (SHE\ G, = (C)F\ 2
by t — (x,t). Hence, we get an inclusion
Wl((Sl)k \ Cx;tl,tg) — 7T1(((C*)k \ Z; 21, 22)

where z; = (x,t1) and 29 = (x,t3). We call en element in the former
fundamental group an angular move.

This situation is the most interesting if 2 € R* \ A, so that C, = @,
and t; = to = t. Then, we obtain an embedding

ZF ~ i ((SHFt) = m ((C)*\ Z; 2),

where z = (z,t).
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Fundamental Groups

Consider 7r1(((C*)2 \ Zy; z), where z = (z,1). Y

| 1T ad
That is, there is a canonical embedding

P: 771((31)2;25) — 71'1((((:*)2 \ Zy; z).
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Fundamental Groups

Each t € (S')* defines an inclusion
v RE\ Ay — (CHR\ Z
by x — (x,t). Hence, we get an inclusion
m (Rk \ At;x1,x2) — ﬂl((C*)k \ Z; 21, zz)

where z1 = (z1,t) and 22 = (z2,t). We call en element in the former
fundamental group a modular move.

This situation is not very interesting if t € (S1)¥\ C, so that A; = @,
and x1 = xo = x, for then

T (Rk; a:) = 0.
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Consider m1((C*)?\ Zy; z), where z = (z,1).

That is, each E; € mo(R?\ A) gives an embedding
©j: 771((5'1)2;75) — 71'1((((:*)2 \ Zf; z). ,<<<_-:'

IR
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Fundamental Groups

Consider m1((C*)?\ Zy; z), where z = (z,1).

-
That is, each E; € mo(R?\ A) and pjy € m(R?\ A;) gives an embedding

pier T ((S1)?t) = m ((C*)?\ Zy; 2).
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Fundamental Groups

Definition

The amoebic fundamental group is the subgroup

al(((C*)2 \ Zf; z) = <Im (¢1)y.-.,Im (goK)> C 7r1(((C*)2 \ Zf; z).

Question

Under what conditions is

a1 (((C*)Q \ Zf; Z) = Wl((C*)2 \ Zf; 2)7
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Fundamenta.

Proposition

Let £ C R? be a piecewise smooth curve segment from x1 € Ey to
x9 € Ey intersecting the spine S of the amoeba in an edge with
primitive integer tangent vector k = (k1, ko). Then,

ki ke _ k1. ko
Y1712 = Y21722-

Figure 1. Amoeba of the polynomial
1+ :? + 80?%:3 + 40 :? 2+ :';:',l (shaded) together with its spine
(solid) and the dual triangulation of the Newton polytope
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Fundamenta

@
@
AL I
\\\.\\\ ——_ . \\\‘.\\\
Proposition
If f is a univariate polynomial, then
o1 (C*\ Zf; 2) = m (C*\ Zf; 2)
if and only if all roots of f are separated in moduli.
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Fundamental Groups

Definition

An amoeba A is mazimal if its order map is surjective.

Conjecture

If the amoeba A is mazximal, then

o1 (C2\ Zp; 2) = m ((C7)2\ Zj3 2).

..but if A is mazimal then typically Zy is nodal and intersects the
boundary of (C*)? transversally...
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Fundamental Groups

A characterization of A-discriminantal hypersurfaces
in terms of the logarithmic Gauss map

M. M. Kapranov *
Theorem 1.3. Let G=(T*)™ be an algebraic torus, Z C G — an algebraic irreducible
hypersurface. The Gauss map yz:Z—IP""" is birational if an only if there exist

1>0,a finite subset ACZ" ' as above and an isamorphism of tori G- T(L ,) taking
Z to the reduced A-discriminantal hypersurface V.

Corollary

Let A be a configuration of codimension m = 1, and let D4 denote the
reduced principal A-determinant. Then,

o1 (C*\ Das;w) = m (C*\ Da;w).
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Fundamental Groups

Proposition
Let D gdenote the A-discriminant and E 4 the principal A-determinant.
IfC # (SY)? and

a) Log: E4 — A is 2-1 outside of the preimage of the contour

b) Arg: E4 — C is 1-1 outside of the preimage of the shell

c) The lattice width of N (D4) is at most 1.

then

01 ((C*)2\ Ea; 2) = m ((C*)2\ Ea; 2)

Series Principal A-determinant
F1 and G2 (1 — 21)(1 — ZQ)(Zl — Zg)
Fg, Fg, and H2 (1—Z1)(1—22)(1—Z1 —22)
Gl, I’.[g7 and H(, (1—42122)(1—2’1 —ZQ)
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Fundamental Groups

Series Principal A-determinant
Hyand Hy (14 42129)(1 — 229 + 22 + 421 20)
H,y (1 —21)(1 — 29)(1 — 229 + 22 + 421 29)
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Configurations of Dimension 1

Consider the case of n = m = 1. That is,
d—k

1 11
A_[O 1 d] and B = _Z ,

with ged(k,d) = 1. We consider univariate trinomials of degree d:

f(2) = wo + w25 + wy 24,

Theorem
Let A ={0,k,d} with ged(k,d) = 1. Then, the braid map
1 ((C*)3 \ DA; w) — CBd,

into the cyclic braid group on d strands, is surjective.
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Configurations of Dimension 1

f(Z) = wo + w1 2k -+ wo 2 e
Choose a basepoint with :

lwi| < min (Jwo, [ws]) Y ’ )
w(t) = (wo, wr, €™ wy) R

SN
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Configurations of Dimension 1

The discriminant of the normalized polynomial

f(2) =1+wz" 4 24

is a d-fold covering of the A-discriminant.
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Configurations of Dimension 1

Theorem
Let A ={0,k,d} with ged(k,d) = 1. Then, the braid map

m (((C*)3 \ Dy; w) — CBy,
into the cyclic braid group on d strands, is surjective.

Proof. The zonotope Z is an interval of length 27wd. Recall,

corg: Z2°N (éf + 27TZ) — 7r0(51 \C)7

where &5 = darg, (w).
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Configurations of Dimension 1

Corollary

If A={0,k,..., kn,d} with gcd(ky, ..., kn,d) =1, then
71 ((C*)™ \ Da;w) ~ Z x CBy.

N.B., there might be no Mellin—Barnes basis of solutions.
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Configurations of Dimension 1

Corollary

If A={0,k,..., kn,d} with gcd(ky, ..., kn,d) =1, then
71 ((C*)™ \ Da;w) ~ Z x CBy.

B
131 XX K

W =

The subset {0, k;,d} gives a braid which has ged(k;, d) equidistributed
fundamental flips. Since ged(ky, ..., km,d) = 1, these braids generates
the full cyclic braid group CB,.
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Configurations of Dimension 1

Given
1 1 ... 1 1

A=
0 ki ... kyn d
with
ged(ky, ..oy km,d) =1,
the monodromy group of the A-hypergeometric system, for
non-resonant parameters, depends only on d.

In particular, we can replace A by the codimension one configuration
1 11
0 1 d

without changing the monodromy group. The latter admits a
Mellin—Barnes basis of solutions.
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tions of Codimensio

Apell’s Fy:

.F_'

E(z1,20) =1—2z1 + z% — 229 — 22129 + z%

e W-;GSON{) (E/JA- 1t5 f‘ I F

18 February 2020 31 /32



Configurations of Codimension 2

Thank you!

zf’ + z% + zi)’zg + z%zg

18 February 2020 32 /32



	Background
	Amoebas
	Fundamental Groups
	Configurations of Dimension 1
	Configurations of Codimension 2

	anm0: 
	anm1: 


