Generators of

Computing Fundamental Groups using Amoebas

Jens Forsgård

18 February 2020

The A-hypergeometric system $\mathcal{H}(A;\beta)$ is a system of PDE's whose solutions are meromorphic functions on the affine space \mathbb{C}^A .

The principal symbol of $\mathcal{H}(A;\beta)$ is the principal A-determinant $E_A \subset \mathbb{C}^A...$

...and we have a monodromy representation

$$\mathcal{M}(\beta) \colon \pi_1(\mathbb{C}^A \setminus E_A; w) \to \mathcal{M}_A(\beta).$$

J. reine angew. Math. 718 (2016), 183-206 DOI 10.1515/crelle-2014-0054

Journal für die reine und angewandte Mathematik © De Gruyter 2016

Monodromy of A-hypergeometric functions

By Frits Beukers at Utrecht

Abstract. Using Mellin-Barnes integrals we give a method to compute elements of the monodromy group of an A-hypergeometric system of differential equations. The method works under the assumption that the A-hypergeometric system has a basis of solutions consisting of Mellin-Barnes integrals. Hopefully these elements generate the full monodromy group, but this has only been verified in some special cases.

$$\mathcal{M}(\beta) \colon \pi_1(\mathbb{C}^A \setminus E_A; w) \to \mathrm{M}_A(\beta).$$

Problems:

- ▶ Does there exist a Mellin–Barnes basis of solutions?
- ▶ Is the fundamental group generated by *amoebic paths*?

Series	M-B	$\alpha_1 = \pi_1$
F_1, G_2	Τ	Т
F_2, F_3, H_2	${ m T}$	${ m T}$
G_1, H_3, H_6	${\rm T}$	${ m T}$
H_1	T	${ m T}$
H_4,H_7	${ m T}$	${ m T}$
G_3	Т	Т
H_5	${ m T}$	${ m T}$
$\overline{F_4}$	F	F

$$\mathbb{R}^k \quad \stackrel{\text{Log}}{\longleftarrow} \quad (\mathbb{C}^*)^k \quad \stackrel{\text{Arg}}{\longrightarrow} \quad (S^1)^k$$

Definition

Let $Z \subset (\mathbb{C}^*)^k$. Then, the *amoeba* of Z is the projection

$$\mathcal{A}(Z) = \text{Log}(Z),$$

and the coamoeba of Z is the projection

$$C(Z) = Arg(Z).$$

Definition 1.4. The *amoeba* of a Laurent polynomial f is the subset $\log(Z_f) \subset \mathbb{R}^k$.

This name is motivated by the following typical shape of $log(Z_f)$ in two dimensions (see Figure 16).

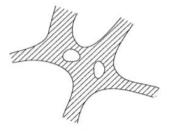


Figure 16. Amoeba

This shape is peculiar because of the thin "tentacles" going off to infinity. A bit later we shall give rigorous statements showing that the behavior of $\log(Z_f)$ is indeed typical. But first we relate the amoeba to the problem of finding Laurent series expansions for the rational function 1/f(x). Recall the general properties of Laurent series in several variables and their regions of convergence, see e.g., [Kr].

from [Gelfand–Kapranov–Zelevinsky]

Mellin Transforms of Multivariate Rational Functions

Lisa Nilsson · Mikael Passare

Theorem 4 For any connected component E of the coamoeba complement $\mathbb{R}^n \setminus \overline{\mathcal{A}'_f}$ there is an integral representation

$$\frac{1}{f(z)} = \int_{\sigma + i\mathbb{R}^n} M_{1/f}^E(s) z^{-s} ds, \tag{19}$$

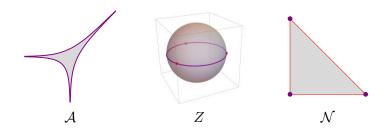
which converges for all z in the domain $Arg^{-1}(E)$. Here σ is an arbitrary point in int Δ_f and

$$M_{1/f}^{E}(s) = \frac{1}{(2\pi i)^{n}} \int_{\text{Arg}^{-1}(\theta)} \frac{z^{s}}{f(z)} \frac{dz}{z} = \frac{1}{(2\pi i)^{n}} \int_{\mathbb{R}^{n}} \frac{e^{\langle s, x + i\theta \rangle}}{f(e^{x + i\theta})} dx, \qquad (20)$$

with θ being an arbitrary point in the component E.

Amoebas are one part algebraic and one part combinatorial.

$$f(z_1, z_2) = 1 + z_1 + z_2$$



Theorem (Forsberg-Passare-Tsikh)

Let $f \in \mathbb{C}[z_1, \ldots, z_k]$, with Newton polytope \mathcal{N} . Then, there is a map

$$\operatorname{ord}_f \colon \pi_0(\mathbb{R}^n \setminus \mathcal{A}) \hookrightarrow \mathcal{N} \cap \mathbb{Z}^k.$$

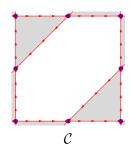
AMOEBAS, MONGE-AMPÈRE MEASURES, AND TRIANGULATIONS OF THE NEWTON POLYTOPE

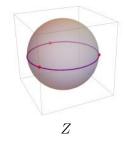
MIKAEL PASSARE and HANS RULLGÅRD

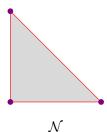
Figure 1. Amoeba of the polynomial $1 + z_1^5 + 80z_1^2z_2 + 40z_1^3z_2^2 + z_1^3z_2^4$ (shaded) together with its spine (solid) and the dual triangulation of the Newton polytope

Coamoebas are one part algebraic and one part combinatorial.

$$f(z_1, z_2) = 1 + z_1 + z_2$$







The A in "A-hypergeometric" stands for the support set of the quasi-homogenization $f_h(z_0, z) = z_0 f(z)$.

Gale duality: AB = 0.

$$f(z_1, z_2) = 1 + z_1^5 + 80 z_1^2 z_2 + 40 z_1^3 z_2^2 + z_1^3 z_2^4.$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 5 & 2 & 3 & 3 \\ 0 & 0 & 1 & 2 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ -4 & -10 \\ 0 & 5 \\ 1 & 0 \end{bmatrix}$$

The dimension is n = rank(A) - 1 and the codimension is m = rank(B).

Let $A = \{\alpha_1, \dots, \alpha_N\}$ with Gale dual $B^{\top} = \{\beta_1, \dots, \beta_N\}$, and consider the Zonotope

$$\mathcal{Z} = \left\{ \left. \frac{\pi}{2} \sum_{i=1}^{N} \lambda_i \, \beta_i \, \right| \, |\lambda_i| \le 1 \, \right\} \subset \mathbb{R}^m.$$

Theorem (F. & Johansson)

Let $f \in \mathbb{C}[z_1, \ldots, z_k]$, with dual zonotope \mathcal{Z} . Then, there is a map

$$\operatorname{cor}_f \colon \mathcal{Z}^{\circ} \cap (\xi_f + 2\pi \mathbb{Z}^m) \hookrightarrow \pi_0((S^1)^n \setminus \overline{\mathcal{C}}).$$

$$\mathbb{R}^k \quad \stackrel{\text{Log}}{\longleftarrow} \quad (\mathbb{C}^*)^k \quad \xrightarrow{\text{Arg}} \quad (S^1)^k$$

Let $Z \subset (\mathbb{C}^*)^k$ be fixed. We write

$$A = A(Z)$$
 and $C = C(Z)$.

For $x \in \mathbb{R}^k$, let

$$C_x = C(Z \cap \text{Log}^{-1}(x)).$$

For $t \in (S^1)^k$, let

$$\mathcal{A}_t = \mathcal{A}(Z \cap \operatorname{Arg}^{-1}(t)).$$

Each $x \in \mathbb{R}^k$ defines an inclusion

$$\iota_x \colon (S^1)^k \setminus \mathcal{C}_x \to (\mathbb{C}^*)^k \setminus Z$$

by $t \mapsto (x, t)$. Hence, we get an inclusion

$$\pi_1((S^1)^k \setminus \mathcal{C}_x; t_1, t_2) \to \pi_1((\mathbb{C}^*)^k \setminus Z; z_1, z_2)$$

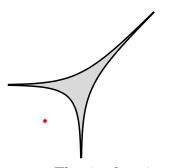
where $z_1 = (x, t_1)$ and $z_2 = (x, t_2)$. We call en element in the former fundamental group an angular move.

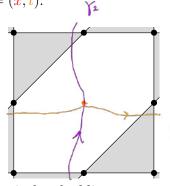
This situation is the most interesting if $x \in \mathbb{R}^k \setminus \mathcal{A}$, so that $\mathcal{C}_r = \emptyset$, and $t_1 = t_2 = t$. Then, we obtain an embedding

$$\mathbb{Z}^k \simeq \pi_1((S^1)^k; t) \to \pi_1((\mathbb{C}^*)^k \setminus Z; z),$$

where z = (x, t).

Consider
$$\pi_1((\mathbb{C}^*)^2 \setminus Z_f; z)$$
, where $z = (x, t)$.





That is, there is a canonical embedding

$$\varphi \colon \pi_1((S^1)^2;t) \hookrightarrow \pi_1((\mathbb{C}^*)^2 \setminus Z_f;z).$$

Each $t \in (S^1)^k$ defines an inclusion

$$\iota_t \colon \mathbb{R}^k \setminus \mathcal{A}_t \to (\mathbb{C}^*)^k \setminus Z$$

by $x \mapsto (x,t)$. Hence, we get an inclusion

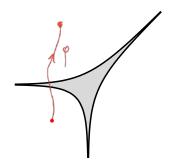
$$\pi_1(\mathbb{R}^k \setminus \mathcal{A}_t; x_1, x_2) \to \pi_1((\mathbb{C}^*)^k \setminus Z; z_1, z_2)$$

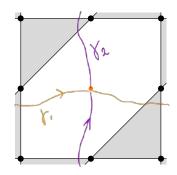
where $z_1 = (x_1, t)$ and $z_2 = (x_2, t)$. We call en element in the former fundamental group a modular move.

This situation is **not** very interesting if $t \in (S^1)^k \setminus \mathcal{C}$, so that $\mathcal{A}_t = \emptyset$, and $x_1 = x_2 = x$, for then

$$\pi_1(\mathbb{R}^k; x) = 0.$$

Consider $\pi_1((\mathbb{C}^*)^2 \setminus Z_f; z)$, where z = (x, t).

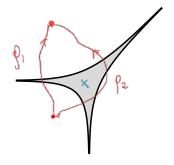


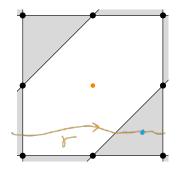


That is, each $E_i \in \pi_0(\mathbb{R}^2 \setminus \mathcal{A})$ gives an embedding

$$\varphi_j \colon \pi_1((S^1)^2;t) \hookrightarrow \pi_1((\mathbb{C}^*)^2 \setminus Z_f;z).$$

Consider $\pi_1((\mathbb{C}^*)^2 \setminus Z_f; z)$, where z = (x, t).





That is, each $E_i \in \pi_0(\mathbb{R}^2 \setminus \mathcal{A})$ and $\rho_{i\ell} \in \pi_0(\mathbb{R}^2 \setminus \mathcal{A}_t)$ gives an embedding $\varphi_{i\ell} \colon \pi_1((S^1)^2;t) \hookrightarrow \pi_1((\mathbb{C}^*)^2 \setminus Z_f;z).$

Definition

The amoebic fundamental group is the subgroup

$$\alpha_1((\mathbb{C}^*)^2 \setminus Z_f; z) = \langle \operatorname{Im}(\varphi_1), \dots, \operatorname{Im}(\varphi_K) \rangle \subset \pi_1((\mathbb{C}^*)^2 \setminus Z_f; z).$$

Question

Under what conditions is

$$\alpha_1((\mathbb{C}^*)^2 \setminus Z_f; z) = \pi_1((\mathbb{C}^*)^2 \setminus Z_f; z)?$$

Proposition

Let $\ell \subset \mathbb{R}^2$ be a piecewise smooth curve segment from $x_1 \in E_1$ to $x_2 \in E_2$ intersecting the spine S of the amoeba in an edge with primitive integer tangent vector $k = (k_1, k_2)$. Then,

$$\gamma_{11}^{k_1}\gamma_{12}^{k_2} = \gamma_{21}^{k_1}\gamma_{22}^{k_2}.$$

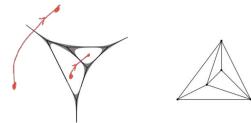
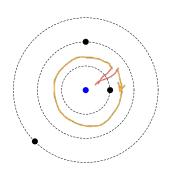
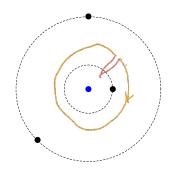


Figure 1. Amoeba of the polynomial $1 + z_1^5 + 80z_1^2z_2 + 40z_1^3z_2^2 + z_1^3z_2^4$ (shaded) together with its spine (solid) and the dual triangulation of the Newton polytope





Proposition

If f is a univariate polynomial, then

$$\alpha_1(\mathbb{C}^* \setminus Z_f; z) = \pi_1(\mathbb{C}^* \setminus Z_f; z)$$

if and only if all roots of f are separated in moduli.

Definition

An amoeba \mathcal{A} is maximal if its order map is surjective.

Conjecture

If the amoeba A is maximal, then

$$\alpha_1((\mathbb{C}^*)^2 \setminus Z_f; z) = \pi_1((\mathbb{C}^*)^2 \setminus Z_f; z).$$

...but if A is maximal then typically Z_f is nodal and intersects the boundary of $(\mathbb{C}^*)^2$ transversally...

A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map

M. M. Kapranov *

Theorem 1.3. Let $G = (\mathbb{C}^*)^m$ be an algebraic torus, $Z \subset G$ – an algebraic irreducible hypersurface. The Gauss map $\gamma_Z: Z \to \mathbb{P}^{m-1}$ is birational if an only if there exist n>0, a finite subset $A \subset \mathbb{Z}^{n-1}$ as above and an isomorphism of tori $G \to T(L_A)$ taking Z to the reduced A-discriminantal hypersurface V.

Corollary

Let A be a configuration of codimension m=1, and let D_A denote the reduced principal A-determinant. Then,

$$\alpha_1(\mathbb{C}^* \setminus D_A; w) = \pi_1(\mathbb{C}^* \setminus D_A; w).$$

Proposition

Let D_A denote the A-discriminant and E_A the principal A-determinant. If $\mathcal{C} \neq (S^1)^2$ and

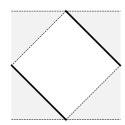
- a) Log: $E_A \to A$ is 2-1 outside of the preimage of the contour
- b) Arg: $E_A \to \mathcal{C}$ is 1-1 outside of the preimage of the shell
- c) The lattice width of $\mathcal{N}(D_A)$ is at most 1.

then

$$\alpha_1((\mathbb{C}^*)^2 \setminus E_A; z) = \pi_1((\mathbb{C}^*)^2 \setminus E_A; z)$$

Series	Principal A -determinant
F_1 and G_2	$(1-z_1)(1-z_2)(z_1-z_2)$
F_2 , F_3 , and H_2	$(1-z_1)(1-z_2)(1-z_1-z_2)$
$G_1, H_3, \text{ and } H_6$	$(1-4z_1z_2)(1-z_1-z_2)$

Series	Principal A-determinant
H_4 and H_7	$(1+4z_1z_2)(1-2z_2+z_2^2+4z_1z_2)$
H_1	$(1-z_1)(1-z_2)(1-2z_2+z_2^2+4z_1z_2)$



Consider the case of n=m=1. That is,

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & k & d \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} d - k \\ -d \\ k \end{bmatrix},$$

with gcd(k, d) = 1. We consider univariate trinomials of degree d:

$$f(z) = w_0 + w_1 z^k + w_2 z^d.$$

Theorem

Let $A = \{0, k, d\}$ with gcd(k, d) = 1. Then, the braid map

$$\pi_1((\mathbb{C}^*)^3 \setminus D_A; w) \to \mathcal{CB}_d,$$

into the cyclic braid group on d strands, is surjective.

$$f(z) = w_0 + w_1 z^k + w_2 z^d$$

Choose a basepoint with $|w_1| \ll \min(|w_0|, |w_2|)$

$$w(t) = \left(w_0, w_1, e^{2\pi i t} w_2\right)$$

The discriminant of the normalized polynomial

$$f(z) = 1 + w z^k + z^d$$

is a d-fold covering of the A-discriminant.

Theorem

Let $A = \{0, k, d\}$ with gcd(k, d) = 1. Then, the braid map

$$\pi_1((\mathbb{C}^*)^3 \setminus D_A; w) \to \mathcal{CB}_d,$$

into the cyclic braid group on d strands, is surjective.

Proof. The zonotope \mathcal{Z} is an interval of length $2\pi d$. Recall,

$$\operatorname{cor}_f \colon \mathcal{Z}^{\circ} \cap (\xi_f + 2\pi \mathbb{Z}) \hookrightarrow \pi_0(S^1 \setminus \mathcal{C}),$$

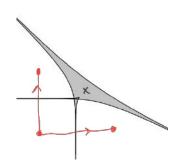
where $\xi_f = d \arg_{\pi}(w)$.

Corollary

If
$$A = \{0, k_1, \dots, k_m, d\}$$
 with $gcd(k_1, \dots, k_m, d) = 1$, then $\pi_1((\mathbb{C}^*)^m \setminus D_A; w) \simeq \mathbb{Z} \times \mathcal{CB}_d$.

N.B., there might be no Mellin–Barnes basis of solutions.

$$A = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 6 \end{array} \right]$$



Corollary

If
$$A = \{0, k_1, \dots, k_m, d\}$$
 with $gcd(k_1, \dots, k_m, d) = 1$, then $\pi_1((\mathbb{C}^*)^m \setminus D_A; w) \simeq \mathbb{Z} \times \mathcal{CB}_d$.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 6 \end{bmatrix} \qquad \times \qquad | \qquad \times \qquad |$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \end{bmatrix} \qquad \times \qquad \times \qquad \times$$

The subset $\{0, k_i, d\}$ gives a braid which has $gcd(k_i, d)$ equidistributed fundamental flips. Since $gcd(k_1,\ldots,k_m,d)=1$, these braids generates the full cyclic braid group \mathcal{CB}_d .

Given

$$A = \left[\begin{array}{cccc} 1 & 1 & \dots & 1 & 1 \\ 0 & k_1 & \dots & k_m & d \end{array} \right]$$

with

$$\gcd(k_1,\ldots,k_m,d)=1,$$

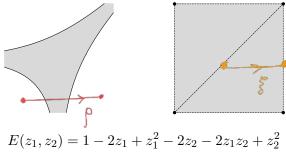
the monodromy group of the A-hypergeometric system, for non-resonant parameters, depends only on d.

In particular, we can replace A by the codimension one configuration

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & d \end{array}\right]$$

without changing the monodromy group. The latter admits a Mellin–Barnes basis of solutions.

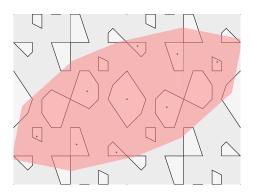
Apell's F_4 :



$$E(z_1, z_2) = 1 - 2z_1 + z_1^2 - 2z_2 - 2z_1z_2 + z_2^2$$

The wissing yell is 5 p & p

Thank you!



$$f(z_1, z_2) = 1 + z_1^3 + z_2^2 + z_1^3 z_2 + z_1^2 z_2^2$$

32 / 32