Notes on

Galois group and Grothendieck-Teichmüller theory

Action on torsion-elements of $\pi_1^{geom}(\mathcal{M}_{0,[n]})$ by cohomological methods

Benjamin Collas^{*}

GTEM Summer School Geometry and Arithmetic around Galois Theory Galatasaray University, Istanbul, June 8-9, 2009

^{*}Université Pierre et Marie Curie - Paris 6, France.

Contents

1	\mathbf{Gal}	ois and Grothendieck-Teichmüller groups	1
	1.1	Galois geometric representation	1
	1.2	Projective line minus 3 points	2
	1.3	Grothendieck-Teichmüller group	4
2	Ger	nus 0 Moduli spaces of curves	4
	2.1	Moduli spaces and mapping class group	4
	2.2	Mapping class group and Artin braids	5
	2.3	$G_{\mathbb{Q}}, \widehat{GT}$ and Braids	6
3 \widehat{GT} - $G_{\mathbb{Q}}$ action on torsion		$-G_{\mathbb{Q}}$ action on torsion	6
	3.1	Torsion elements in $\Gamma_{0,[n]}$	7
	3.2	Torsion element in $\widehat{\Gamma}_{0,[n]}$	7
	3.3	Action of \widehat{GT}	8

Abstract

We follow Grothendieck's idea to study $G_{\mathbb{Q}}$ using its geometric action, and we obtain the expression of this action on torsion elements of the geometric fundamental group $\pi_1^{geom}(\mathcal{M}_{0,[n]})$.

Questions

- which X to choose ?
- how \widehat{GT} can help ?

1 Galois and Grothendieck-Teichmüller groups

1.1 Galois geometric representation

The Fundamental Exact Sequence

Let X be a smooth absolutely irreducible variety over \mathbb{Q} .

where $\pi_1^{alg}(X \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}) \simeq \widehat{\pi}_1^{top}(X(\mathbb{C})).$

This leads to a geometric representation. And once a section s, ie a \mathbb{Q} -rational point, is chosen,

$$G_{\mathbb{Q}} \to \operatorname{Aut}(\widehat{\pi}_1^{top}(X(\mathbb{C})))$$
$$\sigma \mapsto (\gamma \mapsto \sigma \gamma \sigma^{-1})$$

Key example: $X_4 = \mathbb{P}^1 \overline{\mathbb{Q}} - \{0, 1, \infty\}$ Since $\pi_1^{top}(X_4) = \mathbb{F}_2$, once a rational base point chosen, the (FES) gives, by a theorem of *Belyi*:

$$G_{\mathbb{Q}} \hookrightarrow \operatorname{Aut}(\widehat{\mathbb{F}}_2)$$

1.2 Projective line minus 3 points

Theorem A

There exists a faithful action

$$\begin{array}{rccc} G_{\mathbb{Q}} & \hookrightarrow & \operatorname{Aut}(\widehat{\mathbb{F}}_2) \\ \sigma & \mapsto & \phi_{\sigma} \end{array}$$

defined, where $\chi(\sigma)$ is the usual cyclotomic character and $f_{\sigma} \in \widehat{\mathbb{F}}'_2$, by

$$\phi_{\sigma}(x) = x^{\chi(\sigma)}, \quad \phi_{\sigma}(y) = f_{\sigma}^{-1}(x, y) y^{\chi(\sigma)} f_{\sigma}(x, y).$$

To avoid breaking the symmetries, consider:

• $Aut(X_4) = S_3 = \langle \omega, \theta \rangle$ where

$$\theta: t \mapsto 1 - t \qquad \omega: t \mapsto (1 - t)^{-1}$$

• The 6 tangential base points of X_4

$$\mathcal{B} = \{\overrightarrow{01}, \overrightarrow{10}, \overrightarrow{1\infty}, \overrightarrow{\infty1}, \overrightarrow{\infty0}, \overrightarrow{0\infty}\}$$

• The fundamental topological groupoïd $\pi_1^{top}(X_4, \mathcal{B})$ compound with paths from a tangential base point to another, modulo homothopy.

Explicit action on x and y

• Action on x is defined by monodromic action on Puiseux series.

$$x.(\sum_{n} a_{n}t^{\frac{n}{k}}) \to \sum_{n} a_{n}\zeta^{n}t^{\frac{n}{k}} \text{ where } \zeta = exp(2i\pi/k)$$

$$\sigma.x.(\sum_{n} a_{n}t^{\frac{n}{k}}) \xrightarrow{\sigma^{-1}} \sum_{n} \sigma^{-1}(a_{n})t^{\frac{n}{k}} \xrightarrow{x} \sum_{n} \sigma^{-1}(a_{n})\zeta^{n}t^{\frac{n}{k}} \xrightarrow{\sigma}$$

$$\xrightarrow{\sigma} \sum_{n} \sigma(\sigma^{-1}(a_{n})\zeta^{n})t^{\frac{n}{k}} = \sum_{n} a_{n}\zeta^{n\chi(\sigma)}t^{\frac{n}{k}} = x^{\chi(\sigma)}.(\sum_{n} a_{n}t^{\frac{n}{k}})$$

• Action on y comes from symmetries of X_4 . Let $p \in \pi_1(X_4; \overrightarrow{01}, \overrightarrow{10})$ and $\theta : t \mapsto 1 - t \in Aut(X_4)$. Then

$$y = p^{-1}\theta(x)p.$$

A similar computation on y makes appear the following element

$$f_{\sigma}(x,y) := p^{-1} \sigma p \in \widehat{\mathbb{F}}_2'.$$

Theorem B

We have a parametrization:

$$\begin{array}{rccc} G_{\mathbb{Q}} & \to & \widehat{\mathbb{Z}}^* \times \widehat{F}'_2 \\ \sigma & \mapsto & (\chi_{\sigma}, f_{\sigma}) \end{array}$$

Where, f_{σ} satisfies the following two equations:

(I)
$$f_{\sigma}(x,y)f_{\sigma}(y,x) = 1$$

(II)
$$f_{\sigma}(z,x)z^{m_{\sigma}}f_{\sigma}(y,z)y^{m_{\sigma}}f_{\sigma}(x,y)x^{m_{\sigma}} = 1$$
 where $z = (xy)^{-1}$ and $m_{\sigma} = \frac{1}{2}(\chi_{\sigma} - 1)$

These 2 relations come from the essential symmetries of X_4 :

(I) is obtained by applying σ on the geometric relation, where $p \in \pi_1(X_4; \overrightarrow{01}, \overrightarrow{10})$

$$\theta(p)p = 1$$
 $f_{\sigma}(x, y)f_{\sigma}(y, x) = 1$

(II) Let $q = r \circ p \in \pi_1(X_4; \overrightarrow{01}, \overrightarrow{1\infty})$ where $r \in \pi_1(X_4, \pi_1(X_4; \overrightarrow{10}, \overrightarrow{1\infty}))$ and $\omega \in Aut(X_4)$. Then

$$\omega^2(q)\omega(q)q = 1$$
 implies (II)

1.3 Grothendieck-Teichmüller group

Definition of \widehat{GT}

Starting from the previous parametrization:

$$\sigma \in G_{\mathbb{Q}} \hookrightarrow (\chi_{\sigma}, f_{\sigma}) \in \hat{\mathbb{Z}}^{\times} \times \mathbb{F}'_{2}.$$

One can try to define an internal composition law. Lets $\sigma, \tau \in G_{\mathbb{Q}}$, then

$$\begin{array}{ccc} x \xrightarrow{\tau} x^{\chi_{\tau}} \xrightarrow{\sigma} & x^{\chi_{\tau}\chi_{\sigma}} \\ y \xrightarrow{\tau} f_{\tau}^{-1} y^{\chi_{\tau}} f_{\tau} \xrightarrow{\sigma} F_{\sigma}^{-1}(f_{\tau}) f_{\sigma}^{-1} y^{\chi_{\tau}\chi_{\sigma}} f_{\sigma} F_{\sigma}(f_{\tau}) \end{array}$$

And eventually

$$(\chi_{\sigma}, f_{\sigma}).(\chi_{\tau}, F_{\tau}) = (\sigma\tau, f_{\sigma}F_{\sigma}(f_{\tau}))$$

Using the previous symmetries in X_4 (and a bit more) yields to (originally defined by Drinfel'd)

Definition

Lets define \widehat{GT} as the group of elements $(\lambda, f) \in \widehat{\mathbb{Z}}^* \times \widehat{\mathbb{F}}'_2$ such that $(x, y) \mapsto (x^{\lambda}, fyf^{-1})$ induces an automorphism of $\widehat{\mathbb{F}}_2$ and that satisfy

- (I) f(x,y)f(y,x) = 1
- (II) $f(z,x)z^m f(y,z)y^m f(x,y)x^m = 1$ where $m = (\lambda 1)/2$
- (III) $\tilde{f}(x_{34}, x_{45})\tilde{f}(x_{51}, x_{12})\tilde{f}(x_{23}, x_{34})\tilde{f}(x_{45}, x_{51})\tilde{f}(x_{12}, x_{23}) = 1$ (where \tilde{f} is the image of f in $\Gamma_{0,5}$).

2 Genus 0 Moduli spaces of curves

Strategy

Which "good" geometric space (or category of spaces) for X can we choose to generalize the symmetries found in X_4 in order to:

- create new group and capture some fundamentals properties of $G_{\mathbb{Q}}$,
- obtain a less theoritical and more computable representation.

2.1 Moduli spaces and mapping class group

Let $S_{g,n}$ be a topological space of genus g with n marked points (x_1, \dots, x_n) .

Definition

Let $\mathcal{M}_{g,n}$ be the moduli space of Riemann surfaces of genus g with n marked points. Or equivalently, the space of analytic structures on $S_{g,n}$ modulo isomorphism.

• Example: $\mathcal{M}_{0,n} = (\mathbb{P}^1 - \{0, 1, \infty\})^{n-3} - \Delta$ is an algebraic variety. Note that the previous $\mathcal{M}_{0,4} = X_4$.

• As $\operatorname{Aut}(\mathcal{M}_{0,n}) = S_n$, following the previous study of X_4 , one considers the unordered $\mathcal{M}_{0,[n]} = \mathcal{M}_{0,n}/S_n$ which is a topological orbifold or a \mathbb{Q} -stack.

Then

$$\Gamma_{0,n} := \pi_1^{top}(\mathcal{M}_{0,n}) \qquad \qquad \Gamma_{0,[n]} := \pi_1^{orb}(\mathcal{M}_{0,[n]}) \text{ as orbifold}$$

$$\pi_1^{geom}(\mathcal{M}_{0,n}) = \widehat{\Gamma}_{0,n} \text{ as algebraic variety} \qquad \qquad \pi_1^{geom}(\mathcal{M}_{0,[n]}) = \widehat{\Gamma}_{0,[n]} \text{ as stack.}$$

From the Fundamental Exact Sequence applied to the fundamental groupoid $\pi_1(\mathcal{M}_{0,[n]}, \mathcal{B})$ where \mathcal{B} is the set of tangential base points in $\mathcal{M}_{0,[n]}$, it follows

Theorem

For $n \ge 4$, there exists an embedding

$$G_{\mathbb{Q}} \hookrightarrow \operatorname{Aut}(\widehat{\Gamma}_{0,[n]}).$$

Mapping class groups as diffeomorphism of surfaces

Paths in $\mathcal{M}_{0,n}$ between two points are continuous deformation of the analytic structures, ie

$$\Gamma_{0,n} = Diff^+(S_{0,n})/Diff^0(S_{0,n}) \qquad \Gamma_{0,[n]} = Diff^+(S_{0,[n]})/Diff^0(S_{0,[n]})$$

Theses groups are generated by Dehn twists along curves:

Theorem [Dehn]

- The pure mapping class group $\Gamma_{0,n}$ is generated by Dehn twists along loops avoiding marked points.
- The full mapping class group Γ_{0,[n]} is generated by Dehn twists along loops avoiding marked points or going through 2 marked points (also called half-twist).

2.2 Mapping class group and Artin braids

Definition

The Artin braid groups B_n is generated by the n-1 generators $\sigma_1, \dots, \sigma_{n-1}$ with relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| > 1$$
 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

The pure Artin braid group $K_n \subset B_n$ is generated by $x_{ij} = \sigma_{j-1}\sigma_{j-2}\cdots\sigma_{i+1}\sigma_i\sigma_{i+1}^{-1}\cdots\sigma_{j-1}^{-1}$

Proposition

Let γ_i a simple loop going through the marked points x_i and x_{i+1} , and τ_i the half-twist it defines. There is a morphism $\tau_i \in \Gamma_{0,[n]} \to \sigma_i \in B_n$ which gives isomorphisms

$$\Gamma_{0,[n]} \simeq B_n / \langle y_n, \omega_n \rangle \qquad \Gamma_{0,n} \simeq K_n / Z$$

where $\omega_n = (\sigma_1 \cdots \sigma_{n-1})^n$, $y_n = \sigma_{n-1} \sigma_{n-2} \cdots \sigma_1^2 \cdots \sigma_{n-2} \sigma_{n-1}$ and $Z = \langle \{x_{1i} x_{2i} \cdots x_{ni}\}_{2 \leq i \leq n} \rangle$.

2.3 $G_{\mathbb{Q}}, \widehat{GT}$ and Braids

This approch by Artin braid groups yields to another proof of the previous theoretic result (first etablished by Drinfel'd)

Theorem (Drinfel'd, Ihara and Matsumoto)

$$\begin{array}{rccc} G_{\mathbb{Q}} & \hookrightarrow & Aut(B_n) \\ \sigma & \mapsto & \sigma_1 \mapsto \sigma_1^{\chi\sigma} \\ & & \sigma_i \mapsto f(y_i, \sigma_i^2)^{-1} \sigma_i^{\chi\sigma} f(y_i, \sigma_i^2) \text{ for } 2 \leq i \leq n-1 \end{array}$$

where $y_i = \sigma_{i-1}\sigma_{i-2}\cdots\sigma_1^2\cdots\sigma_{i-2}\sigma_{i-1}$, and that extends to $\widehat{\Gamma}_{0,[n]} = \widehat{B}_n/\langle y_n, \omega_n \rangle$.

• Proof: by algebraic geometry on configuration spaces, or action on X_4 and group theoretic arguments in \widehat{B}_n .

Moreover, the relation (III) defining \widehat{GT}

$$(III) \qquad \tilde{f}(x_{34}, x_{45})\tilde{f}(x_{51}, x_{12})\tilde{f}(x_{23}, x_{34})\tilde{f}(x_{45}, x_{51})\tilde{f}(x_{12}, x_{23}) = 1$$

lives in $\widehat{\Gamma}_{0,5}$ ($\widehat{\mathbb{F}}_2 \hookrightarrow \widehat{\Gamma}_{0,5}$) and comes from $G_{\mathbb{Q}}$ -action on symmetries of $\mathcal{M}_{0,5}$, such that

Theorem (Ihara-Drinfel'd)

There exists a morphism

$$G_{\mathbb{Q}} \hookrightarrow \widehat{GT}.$$

Following Lochak and Schneps, one recovers by braid computations (originally by Drinfel'd)

A first conclusion

The category of moduli spaces of curves $\mathcal{M}_{0,[n]}$ is helpfull for

- defining the new group \widehat{GT} which approximates $G_{\mathbb{Q}}$,
- obtaining explicit computations in the braids groups \widehat{B}_n .

3 \widehat{GT} - $G_{\mathbb{O}}$ action on torsion

Application

The group \widehat{GT} gives the action of $G_{\mathbb{Q}}$ on torsion elements of $\pi_1^{geom}(\mathcal{M}_{0,[n]})$.

3.1 Torsion elements in $\Gamma_{0,[n]}$

What are the torsion elements in $\Gamma_{0,[n]}$?

Using explicit computations in the Braid group, one can check the following elements have finite order in $\Gamma_{0,[n]}$.

- Order $n \gamma_n = \sigma_1 \sigma_2 \sigma_3 \cdots \sigma_{n-1}$
- Order n-1 $\gamma_{n-1} = \sigma_1 \sigma_2 \sigma_3 \cdots \sigma_{n-2}$
- Order $n-2 \gamma_{n-2} = \sigma_1^2 \sigma_2 \sigma_3 \cdots \sigma_{n-2}$

Theorem

Let $\gamma \in \Gamma_{0,[n]}$ be a torsion element. Then γ is conjugate to a power of γ_n , γ_{n-1} or γ_{n-2} .

We will now determine the conjugacy classes of the torsion elements in the profinite mapping class group $\widehat{\Gamma}_{0,[n]}$.

3.2 Torsion element in $\Gamma_{0,[n]}$

Some cohomological properties

Proposition

Let $\tau \in {\gamma_{n-2}, \gamma_{n-1}, \gamma_n}$ and $\rho_{\tau} : x \in \widehat{K}_n \mapsto \tau x \tau^{-1}$. The elements of the non-abelian cohomology set $H^1(\langle \rho_{\tau} \rangle, \widehat{K}_n/Z)$ correspond to splittings of

$$1 \to K_n/Z \to (K_n/Z) \rtimes < \rho_\tau > \to < \rho_\tau > \to 1$$

up to K_n/Z -conjugacy.

Following Serre.

Definition

Let G be a group and $\{G_i\}_I$ some finite subgroups of G such that:

- 1. Every finite subgroup of G is conjugate to a finite subgroup of one of G_1, \dots, G_r
- 2. For $i \neq j$ and $g \notin G_i$, $G_j \cap gG_ig^{-1} = \{1\}$.

Then one says G satisfies the property (*) for the G_1, \cdots, G_r .

If $\widehat{\Gamma}_{0,[n]}$ satisfies the property (*) for $G_1 = \langle \gamma_n \rangle$, $G_2 = \langle \gamma_{n-1} \rangle$, $G_3 = \langle \gamma_{n-1} \rangle$, then it is sufficient to determine the set $H^1(\langle \rho_\tau \rangle, \widehat{\Gamma}_{0,n})$ in order to determine the conjugacy class of the torsion-elements of $\widehat{\Gamma}_{0,[n]}$.

$$\begin{aligned} H^n(G,M) &\simeq \prod_1^r H^n(G_i,M) \xrightarrow{Goodness} H^n(\widehat{G},M) \simeq \prod_1^r H^n(\widehat{G}_i,M) \\ (*) \text{ implies } (H) \\ \uparrow \\ \text{Torsion } \Gamma_{0,[n]} - H^1(<\rho>,\Gamma_{0,n}) \\ \end{aligned}$$
 Torsion $\widehat{\Gamma}_{0,[n]} - H^1(<\rho>,\widehat{\Gamma}_{0,n})$

Goodness

We will now reduce the problem to the discrete case using the two following results.

Proposition

Let G be a discrete or profinite group and G_1, \dots, G_r some finite subgroups of G such that $vcd_p(G) < \infty$ for every prime p. Then for every p-primary G-module M

$$H^n(G,M) \to \prod_1^r H^n(G_i,M)$$
 (H)

is an isomorphism for n >> 0 if and only if G satisfies the property (*) for the G_i .

Definition

A discrete group G is called *good* if it satisfies $H^n(G, M) \simeq H^n(\widehat{G}, M)$ for every finite G-module M and every $n \ge 0$.

Proposition

The mapping class groups $\Gamma_{0,n}$ and $\Gamma_{0,[n]}$ are good.

Torsion elements in $\widehat{\Gamma}_{0,[n]}$

• $\Gamma_{0,[n]}$ satisfies the property (*) for the $G_1 = \langle \gamma_n \rangle$, $G_2 = \langle \gamma_{n-1} \rangle$, $G_3 = \langle \gamma_{n-1} \rangle$.

Proposition

Let ρ_{τ} as above. Then the two non-commutative sets are equal

$$H^1(<\rho_{\tau}>,\Gamma_{0,n})=H^1(<\rho_{\tau}>,\widehat{\Gamma}_{0,n})$$

As a consequence of the conjugacy classes of the torsion elements in $\Gamma_{0,n}$,

Theorem

Let $\gamma \in \pi_1^{geom}(\mathcal{M}_{0,[n]})$ a torsion element. Then γ is conjugate to a power of γ_n , γ_{n-1} or γ_{n-2} .

3.3 Action of \widehat{GT}

Using these results, we can work in the discrete braid groups $\Gamma_{0,[n]}$. By direct computations in B_n we describe explicitly $H^1(*, \Gamma_{0,[n]})$. The \widehat{GT} action on B_n appears then as a ρ_{τ} -cocycle and one obtains.

Proposition

Let $n \ge 1$. For $1 \le i \le n$, the automorphism $F = (\lambda, f) \in \widehat{GT}$ sends the following elements

$$\alpha_i = \sigma_1 \cdots \sigma_i \qquad \beta_i = \sigma_1^2 \cdots \sigma_i \in \widehat{B}_n$$

to $y\alpha^{\lambda}y^{-1}$ and $y\beta^{\lambda}y^{-1}$ for $y \in \widehat{B}_n$ (ie λ -conjugates).

As a consequence,

Theorem

The automorphism $F = (\lambda, f) \in \widehat{GT} \lambda$ -conjugates all finite-order elements in $\pi_1^{geom}(\mathcal{M}_{0,[n]})$ for $n \ge 4$.

And eventually,

Corollary

The galois goup $G_{\mathbb{Q}} \chi(\sigma)$ -conjugates the finite-order elements in $\pi_1^{geom}(\mathcal{M}_{0,[n]})$ for $n \ge 4$.

Other application of cohomological methods in \widehat{GT}

Remark

Using theses cohomological technics with others $\{G_i\}$, Lochak and Schneps obtained

- a new cohomological definition of \widehat{GT} ,
- a new proof of the inclusion $G_{\mathbb{Q}} \to \widehat{GT}$.

References

- W.J. Harvey and C. MacLachlan. On mapping class groups and Teichmüller spaces. Proc. London Math. Soc., 30(3):496-512, 1975.
- [2] Y. Ihara and M. Matsumoto. On Galois actions of profinite completions of braid groups. In Recent Developments in the inverse Galois problem. M. Fried et al. Eds., AMS, 1995.
- [3] Pierre Lochak and Leila Schneps. The Grothendieck-Teichmüller group as automorphisms of braid groups. In *The Grothendieck theory of dessins d'Enfants*. L. Schneps, London Mathematical Society, 1994.
- [4] Leila Schneps and Pierre Lochak. A cohomological interpretation of the grothendieck-teichmüller group. Inventiones mathematica, (127):571–600, 1997.
- [5] Jean-Pierre Serre. Two letters on non-abelian cohomology. In *Geometric galois actions: around Grothendieck's esquisse d'un programme*, chapter 14. Cambridge University Press, 1997.