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Dan Haran gave in his talk (Ample 2) an axiomatic method, called alge-

braic patching, how to realize a group G 1) over a field K once one has

realized certain subgroups Gi of G which generate G, more precisely, once

there is given a patching datum

E = (E, Fi, Pi, P ; Gi, G)i∈I

on which a group Γ operates, with certain properties.

This talk shall fill this abstract theorem with life presenting a crucial ex-

ample, due to Haran, Völklein and Jarden, where the field E is a rational

function field over a field K which is complete under a nonarchimedean

absolute value. 2)

The talk splits into four parts: The first one is a warm up for the second

part, where we construct the large fields Pi and P in E . The third part

constructs the fields Fi , galois with groups Gi over E . The last part

gather all information to construct the patching datum E and verify all

the necessary properties.
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1. Convergent Power Series

Let K be a field with a nontrivial complete ultrametric absolute value

| | : K → IR≥0 .

The unit circle E = {x ∈ K ; |x| ≤ 1} is the valuation ring of K and the open unit

circle E◦ = {x ∈ K ; |x| < 1} is its maximal ideal. The residue field E/E◦ is denoted

by K , the residue map is x 7→ x.

Definition: A power series

f(z) =

∞∑

n=0

anzn ∈ K[[z]]

is called convergent (on the unit circle E in K ), if

lim
n→∞

|an| = 0 .

Then there is for each c ∈ E a convergent evaluation

ϕc(f) := f(c) =
∞∑

n=0

ancn ∈ K .

We call

|f | := max
n

|an|

the norm of f . For c ∈ E we have

|f(c)| ≤ |f | .

The Weierstrass degree of a convergent power series f is the nonnegative integer

deg+(f) := max{n ∈ IN0 ; |f | = |an|} .

If |f | = 1, then f , the coefficientwise reduction of the convergent power series f , is a

polynomial in K[z] of degree deg+(f).

Proposition 1.1: The convergent power series in K[[z]] form a subring K{z}. The

norm on K{z} is an absolute value which continues the absolute value of K such

that the residue z of z is transcendental over K . The ring K{z} is complete under
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this norm, it is the completion of the polynomial ring K[z], provided with the

functional extension of the absolute value of K . The Weierstrass degree is additive:

deg+(f · g) = deg+(f) + deg+(g) for f, g ∈ K{z} \ {0}.

The units of K{z} are exactly the power series of Weierstrass degree zero.

The euclidean algorithm extends from K[z] to K{z}:

Division with Remainder (Weierstrass): Let f, g ∈ K{z} with g 6= 0 and deg+ g =

d. Then there are unique elements q ∈ K{z} and r ∈ K[z] with

f = q · g + r , deg r < d .

These elements satisfy the inequalities

|q| · |g| ≤ |f | |r| ≤ |f | .

This shows that K{z} is a principal ideal domain. Moreover an important consequence

of the division is the

Weierstrass’ Preparation Theorem: Let 0 6= f ∈ K{z} with deg+ f = d. Then

there is a unit u ∈ K{z}× and a monic polynomial g ∈ K[z] of degree d with

f = u · g , |g| = 1 .

Proof: Divide zd by f to get

zd = q · f + r , deg r < d , |r| ≤ 1 .

Then g = zd − r is the wanted polynomial and u = q is a unit because of deg+ q = 0.

Definition: A power series f =
∑

n anzn ∈ K[[z]] is called ?-convergent (convergent

somewhere in the stars), if it satisfies one of the following equivalent conditions:

1. There is a c ∈ K× such that

f(c) =
∑

n

ancn converges in K .

2. There is an α ∈ K× such that

f(αz) ∈ K{z} .
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3. There is N ∈ IN such that

|an| ≤ Nn for all n ≥ 1 .

The condition 3. gives the definition of a ?-convergent series in K((z)).

Proposition 1.2 (Cauchy): The ?-convergent power series in K[[z]] resp. K((z)) form

a ring K[[z]]? resp. a field K((z))? .

The field K((z))? is algebraically closed in K((z)).

Addendum (Kuhlmann-Roquette): The field extension K((z))|K((z))? is regular.

2. Convergent Mittag-Leffler Series

Preliminary remark: Recall the following special case of a theorem of Mittag-

Leffler: Let c1, . . . , ce ∈ C. If f : IP
1
(C) \ {c1, . . . , ce} → C is a holomorphic

function, then f can be written in a unique way as

f(z) = a0 +

e∑

i=1

fi(z) , fi(z) =

∞∑

j=1

aij

(z − ci)j

with a0, aij ∈ C, where the principal parts fi of f at the singularities ci converge

in IP
1
(C) \ {ci}.

We will now introduce a nonarchimedean analogue of this result. Let K be as above,

let E = K(z) be the rational function field, let I = {1, . . . , e} be a finite nonempty

index set and (ci)i∈I be a finite set of elements in E and assume

|ci − cj | = 1 (i 6= j).

We put

wi =
1

z − ci

∈ E (i ∈ I).

Remark: In the application to patching the situation |ci − cj | < 1 can occur. There are two
solutions in this case:

1. Reduce to the case |ci − cj | = 1. This is the solution in this talk.

2. Consider the case |ci − cj | < 1 seriously. Then the function in (1)

‖f‖ := max{|a0|, |ain| ; i ∈ I, n ∈ IN}
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is not an absolute value but only a K -norm. To get the submultiplicativity ‖fg‖ ≤
‖f‖ · ‖g‖, we have to choose an r ∈ K× with |r| ≤ |ci − cj | and put

wi =
r

z − ci

(i ∈ I).

Then all assertions go through with similar reasoning.

Let R◦
I ⊆ E be the ring of rational functions over K with poles at most in c1, . . . , ce .

Then R◦
I = R[wi ; i ∈ I], by the decomposition into fractional parts each f ∈ R◦

I has a

unique representation

f = a0 +
∑

i∈I

∑

n≥1

ainwn
i (ain ∈ K, = 0 if n � 0).

Proposition 2.1: The elements wi/wj are units in R◦
I . If f ∈ K[wi] is a polynomial

of degree d in wi , then (
wj

wi
)
d
f ∈ K[wj ] is a polynomial of degree ≤ d in wj . The

functional extension of the absolute value of K to E satisfies

(1) f = a0 +
∑

i∈I

∑

n≥1

ainwn
i =⇒ |f | = max

i,n
(|a0|, |ain|) .

Definition-Proposition 2.2: The completion of the ring R◦
I with respect to the

absolute value is a subring RI of Ê , which we call the ring of convergent Mittag-

Leffler series, convergent on the complement

CI := IP
1

\

⋃

i∈I

(ci + E◦)

of e open disjoint discs. Each element f ∈ RI has a unique representation

f = a0 +
∑

i∈I

∑

n≥1

ainwn
i

with

a0, ain ∈ K and lim
n→∞

|ain| = 0 for i ∈ I

and the evaluation f(c) converges for c ∈ CI . The norm on RI is again given by

(1).

The Weierstrass Preparation Theorem for convergent power series in one variable has

in our situation the following consequence:
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Weierstrass Preparation Theorem for Mittag-Leffler Series: Let 0 6= f ∈

RI and i ∈ I . Then there are representations

f = pi · ui with ui ∈ R×
I , pi ∈ K[wi]

where pi is monic and |pi| = 1.

So RI is again a principal ideal domain and

QI = Quot(RI) = (K[wi] \ {0})−1 · RI .

Basic idea of proof for the Preparation Theorem: Start with f = a0 +
∑

i fi(wi) ∈ RI

and assume |I| > 1. By the Preparation theorem from chapter 1 transform fe(we) into

a polynomial in K[we] and by the shift in proposition 2.1 eliminate we . This do, until

only one variable is left.

Remark: In contrast to chapter 1 here the decomposition need not be unique, even if

we fix i ∈ I . E.g.

wi +
1

ci − cj

=
1

ci − cj

·
wi

wj

is a monic polynomial of norm 1 in K[wi] and a unit in RI .

Proposition 2.3: For each J ⊆ I we can form in the same way rings RJ and fields

QJ . For J = ∅ we have R∅ = K and we put Q∅ = E . Then for J, J ′ ⊆ I

RJ ∩ RJ ′ = RJ∩J ′ , QJ ∩ QJ ′ = QJ∩J ′ .

The first equation is obvious, the second one can be reduced to it with some work,

distinguishing the cases J ∩ J ′ 6= ∅ resp. = ∅.

At the end of this chapter we study Cartan’s lemma which says that in special cases for

a field K = K1K2 6= K1, K2 the equality

GLn(K) = GLn(K1) · GLn(K2)

holds. Taking determinants (or n = 1) this means especially

K× = K×
1 · K×

2

which is impossible for many fields like number fields or function fields.
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A situation where this is possible is given by fields which are quotient fields of completely

normed rings of a special type.

Definition: A (nontrivial ultrametric) norm on a ring A is a function

‖ ‖ : A → IR≥0 ,

which has at least one value ε with 0 < ε < 1, such that for all a, b ∈ A:

‖a‖ = 0 =⇒ a = 0

‖a + b‖ ≤ max(‖a‖, ‖b‖)

‖a · b‖ ≤ ‖a‖ · ‖b‖

‖1‖ = 1 .

Cartan’s Lemma: Let A be a completely normed ring which can be decomposed

A = A+ + A−

into a sum of two completely normed subrings, such that each a ∈ A has a repre-

sentation

a = a+ + a− with a+ ∈ A+ , a− ∈ A−

and

‖a+‖ ≤ ‖a‖ , ‖a−‖ ≤ ‖a‖ .

Then every 1-unit b ∈ A× , i.e. ‖b − 1‖ < 1, has a decomposition

b = b+ · b− with b± ∈ A± , ‖1 − b±‖ < 1 .

Proof: Put a1 = b − 1. Define recursively a sequence (aj) in A by

1 + aj+1 = (1 − a+
j )(1 + aj)(1 − a−

j )

Then the products

(1 − a−
1 ) · · · (1 − a−

j ) ∈ (A−)×

resp.

(1 − a+
j ) · · · (1 − a+

1 ) ∈ (A+)×

converge against p− resp. p+ in A− resp. A+ with |1 − p±| < 1. Therefore b± = p−1
±

gives the decomposition b = b+ · b− .

7



Corollary: Let A = A+ + A− be as in the lemma and let A0 be a dense subring

with quotient field E0 . Then

GLn(A) ⊆ GLn(A+) · GLn(A−) · GLn(E0) .

Proof: The norm on A induces a complete norm on Mn(A) by

‖(aij)‖ = max
i,j

‖aij‖

and Mn(A) = Mn(A+) + Mn(A−) satisfies with A the requisites of Cartan’s lemma.

Let b ∈ GLn(A). Since A0 is dense in A, there is a ∈ Mn(A0) with ‖b−1 −a‖ < ‖b‖−1 .

Then

‖1 − ba‖ ≤ ‖b‖ · ‖b−1 − a‖ < 1 ,

so ba is a 1-unit in GLn(A). By Cartan’s Lemma we have a decomposition

ba = b+b− with b+ ∈ GLn(A+), b− ∈ GLn(A−) .

From det a 6= 0 follows a ∈ GLn(E0). This gives the claimed decomposition

b = b+ · b− · a−1 ∈ GLn(A+) GLn(A−) GLn(E0) .

Proposition 2.4: We use the notations of the last proposition, so RI is a ring of

convergent Mittag-Leffler series. Let I = J ] J ′ be a decomposition of I into

nonempty subsets J and J ′ . Let b ∈ GLn(RI). Then there is a decomposition

b = b1 · b2

with

b1 ∈ GLn(RJ) , b2 ∈ GLn(QJ ′) .

Remark: The stronger equation

GLn(RJ) · GLn(RJ ′) = GLn(RI)

does not hold, because R×
J · R×

J ′ 6= R×
I : The unit wi/wj is not a product of units from

K{wi} and K{wj}.
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3. Realize Cyclic Groups over Rational Function Fields

The realization of cyclic groups is one of the first exercises in Inverse Galois Theory.

Since Inverse Galois Theory is one main topic of this conference and since we have not

only experts here, I will treat this basic exercise in detail in the case that the base

field is a rational function field K(x) over an arbitrary field K . Indeed there are many

solutions as can be seen by keeping track of the ramification. Our examples are of

minimal full ramification; remark that there is no unramified proper extension of K(x).

Situation: Let K be a field of characteristic p ≥ 0 with an absolute value, let E =

K(x) be the rational function field over K and let n ∈ IN be a number, the order of

the cyclic group we are going to realize. If p - n let ζ = ζn be a primitive nth root of

unity. Let π ∈ K× be with |π| < 1. Moreover let Q be the quotient field of the ring

K{z} of convergent power series with coefficients in K .

Lemma 3.1: If ζ ∈ K and a 6= b in K× , then there is a cyclic extension F |E inside Q

of degree n which ramifies only at x = aπ−m and x = bπ−m for some m ∈ IN, the

ramification index being n.

Proof: Let y ∈ K[[z]] be such that yn = (1−a−1x)/(1−b−1x). Then E(y)|E is a cyclic

extension of degree n with full ramification at x = a and x = b. Since y is algebraic

over E it converges somewhere by Cauchy, so with x = πmz we get y ∈ K{z} with

ramification at z = π−ma and z = π−mb.

Remark: There is no cyclic extension of degree n > 1 with p - n of K(x) which is

ramified only in one rational place.

Lemma 3.2: Let p - n but ζ /∈ K , and a ∈ K× . Let L = K(ζ) and G = Gal(L|K).

Then there is a cyclic extension F |E inside Q of degree n which ramifies only at

x = aζγπ−m for γ ∈ G and some m ∈ IN, and the ramification index is again n.

Proof: For σ ∈ G let χ(σ) ∈ IN with ζσ = ζχ(σ) be the cyclotomic character lifted to

IN. As in the last lemma let y ∈ L[[x]] be with

yn =
1 − a−1ζ−1x

1 − b−1x
.

This cyclic extension E′(y) of E′ := L(x) does not come from a cyclic extension of E .

We have to modify y in a clever way to

z =
∏

σ∈G

(yσ)χ(σ−1) ∈ L[[x]] .
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Then we have

zn =
∏

σ∈G

(1 − a−1ζ−σx

1 − b−1x

)χ(σ−1)

∈ L(x) = E′

and F ′ = E′(z) is a cyclic extension of E′ of degree n, fully ramified for x = aζσ , σ ∈ G,

and unramified elsewhere, since
∑

σ χ(σ) ≡ 0 mod n. A straightforward calculation,

using χ(στ) ≡ χ(σ) + χ(τ) mod n, shows

zσ = zχ(σ) · fσ(x) with fσ ∈ E′ .

So the field F ′ is left invariant by G, let F = (F ′)G be the fixed field.

L E′ = L(x)
Γ

F ′ L((x))

G G G

K E = K(x)
Γ

F K((x))

The cyclic group Γ = Gal(F ′|E′) is generated by the element ω with zω = ζ−1z . The

straightforward identity zωσ = zσω shows that F ′|E is abelian with

Gal(F ′|E) = Gal(F ′|F ) × Gal(F ′|E′) = Γ × G .

So F ⊆ K((x)) is a cyclic extension of E of degree n with ramification at x = aζσ ,

σ ∈ G. The embedding into Q follows as in the last lemma.

Remark: Let F |K(x) be a cyclic extension of degree n as in Lemma 3.2 with m =

[K(ζn) : K] = |G|, let K̃ be the algebraic closure of K . If x = a with a ∈ K̃ is a

fully ramified place in LK̃|K̃(x) then [K(a) : K] ≥ m and there are at least m fully

ramified, over K conjugate places in FK̃|K̃(x).

Lemma 3.3 (Witt): Let p > 0 and F |E be a cyclic extension of degree q = pn inside

K((x)), which is unramified over K[x]. Then there is a cyclic extension F ′|E of

degree pn+1 , unramified over K[x], with F ⊆ F ′ ⊆ K((x)) which can be embedded

into Q.

Proof: Let O ⊆ K[[x]] be the integral closure of K[x] in F , let Tr be the trace of F |K(x)

and σ a generator of Gal(F |K(x)). From the unramifiedness follows Tr(O) = K[x],

let b ∈ O with Tr(b) = 1. For c = b − bp we have Tr(c) = 0. Again because of the

unramifiedness we have (additive Hilbert 90)

H−1(F |K(x), O) = 0
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und therefore there is a1 ∈ O with

a1 − aσ
1 = c .

Let v be the complete valuation of K((x)). With a = a1 − a1(0) one has v(a) > 0 and

a satisfies

(2) a − aσ = c = b − bp .

Then the zeroes of the polynomial

Zp − Z − a ≡
∏

ν∈ IFp

(Z − ν) mod (x)

are by Hensel’s lemma in K[[x]], let z be one. So F ′ = F (z) is a cyclic, over O

unramified extension of F of degree 1 or p. From zp−z = a we get with (2), that z+b

is a zero of Zp − Z − aσ . Therefore F ′|K(x) is galois and zσ = z + b is a continuation

of σ on F ′ . It remains to determine the order of σ in Gal(F ′|K(x)). Inductively we

see

zσj

= z + b + bσ + . . . + bσj−1

(j ∈ IN),

especially

zσq

= z + Tr(b) = z + 1 .

This shows that z /∈ F , so [F ′ : F ] = p, and the order of σ is larger than q = pn ,

so pn+1 . Therefore F ′|K(x) is a cyclic extension of degree pn+1 , unramified outside

∞ with F ⊆ F ′ ⊆ K((x)). The embedding of F ′ into Q runs as in Lemma 3.1 by a

homothety x := cx.

Corollary: Let char K = p > 0, let a ∈ K× and n ∈ IN. Then K(x) has a cyclic

extension F in K((x)) of degree pn which is ramified exactly at the place x = a,

and there with full exponent pn . We may inject F into Q with ramification at

x = aπ−m for some m ∈ IN.

Proof: By replacing K by the algebraic closure of IFp in K we may assume K to be

perfect. Then the extension in Witt’s lemma has ramification index pn at x = ∞ since

there is no unramified proper extension of K(x). By the Möbius transformation

x =
z

z − a

the place x = ∞ will be transformed into z = a, and the corollary follows from

K((z)) = K((x)). The embedding into Q follows as before.
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4. Solution of Constant Split Embedding Problems

Situation: Let K0 be a field, complete under a nontrivial nonarchimedean absolute

value, let K|K0 be a finite galois extension with group Γ . Let E0 = K0(x) resp.

E = K(x) be the rational function field over K0 resp. K . Let G be a finite group, on

which Γ operates, such that we can form the semidirect product Γ n G.

Problem: A constant finite split embedding problem over K0 has the goal to realize

the projection

pr : Γ n G −→ Γ = Gal(E|E0) = Gal(K|K0)

of the semidirect product as the restriction

res : Gal(F |E0) −→ Gal(E|E0)

with a solution field F which is galois over E0 and contains E . Looking at the kernel

we have an isomorphism Gal(F |R) ' G.

• · · · · · · F
... G

E0 Γ
E

K0 Γ
K

Theorem: The posed embedding problem is solvable by an extension F |E , which has

a K -rational, over E0 unramified place P with decomposition group Γ . Especially

F |K is regular.

Proof: We construct a patching datum

E = (E, Fi, Pi, P ; Gi, G)i∈I

(from the start we only have E and G) like in the talk of Dan, on which the group Γ

operates properly. Then we apply the main theorem of algebraic patching from Dan’s

talk and see that the compound F of E is the solution field of the embedding problem.

At the end we have to prove the existence of the place with the wanted properties.

Altogether we need 7 steps for this purpose.
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1. Construction of the index set I and the groups Gi :

Let G 6= 1, let Gpp be the set of g ∈ G of prime power order > 1, let G0 be a

Γ -transversal of Gpp . Put

I = G0 × Γ und J = G0 × {1} .

On I we have a fixpoint free operation of Γ via

(g0, γ)γ′

= (g0, γγ′) .

Then J is a Γ -transversal of I . To i = (g0, γ) associate the cyclic group

Gi := 〈gγ
0 〉 .

Then Gγ
i = Giγ and the groups Gi generate G.

2. Choice of a subset {ci ; i ∈ I} in K with

cγ
i = ciγ for γ ∈ Γ , ci 6= cj for i 6= j .

For j ∈ J choose primitive elements cj of K|K0 , which are not conjugate over K .

Then put cjγ := cγ
j .

To get |ci − cj | = 1 we have to assume that K|K0 is unramified and K is infinite

(Moshe’s talk showed how to reduce to this case). Then take the ci ’s as lifts from

primitive elements ci ’s of the residue field extension K|K0 .

3. Construction of the big fields Pi ⊆ P for i ∈ I :

With the rational functions

wi =
1

x − ci

(i ∈ I),

build the ring R = K{wi ; i ∈ I} of the corresponding convergent Mittag-Leffler

series and put P = Quot(R), and inside it

Pi = Quot(K{wj ; j 6= i}) , P ′
i = Quot(K{wi})

For γ ∈ Γ holds

wγ
i =

1

x − cγ
i

=
1

x − ciγ

= wiγ (i ∈ I).

So γ induces an automorphism of the ring R◦ = K[wi ; i ∈ I], and from

f = a0 +
∑

i∈I

∑

n≥1

ainwn
i =⇒ fγ = aγ

o +
∑

i∈I

∑

n≥1

aγ
in(wγ

i )n
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we see that the Γ -operation is compatible with the norm:

|fγ| = max
i,n

(
|aγ

0 |, |a
γ
in|

)
= max

i,n

(
|a0|, |ain|

)
= |f | .

Therefore γ extends to an automorphism of the completion R , and Γ becomes an

automorphism group of the field P . Moreover we have P γ
i = Piγ and (P ′

i )
γ = P ′

iγ .

4. Construction of the extensions Fj of E in P ′
j with

Gal(Fj |E) = Gj for all j ∈ J .

By chapter 3 we construct for each j ∈ J inside P ′
j a cyclic extension Fj |E with

galois group Gj .

For i = jγ ∈ I we put Fi = F γ
j to get cyclic extensions of E with group Gi = Gγ

j

which satisfy the compatibility conditions of a patching datum with proper Γ -

operation.

5. Solution of the embedding problem:

The Cartan decomposition

GLn(P ) = GLn(Pi) · GLn(P ′
i )

holds by proposition 2.4. Therefore, including all previous steps, we conclude that

E = (E, Fi, Pi, P ; Gi, G)i∈I

is a patching datum, on which the group Γ operates properly. By the main theorem

of algebraic patching the compound of E is a solution of the constant split embedding

problem.

6. Construction of the K -rational place P:

Choose b ∈ K0 such that |b| > 1. Then we have an evaluation ϕb : R → K . Since

R is a principal ideal domain, this gives a place ϕb : P → IP
1
K which induces a

K -rational place P of F . For nearly all choices of b this place is unramified over

E0 .

7. Γ is the decomposition group of P.

Γ operates on K faithfully with fixed field K0 , so the fixed field in F is a function

field F0 with constant field K0 . Since P is unramified this shows that F0 is the

decomposition field of P.
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