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Forewords

In its current form, the text below should not be regarded as very well-structured lecture notes
but rather as a diary of my own learning about fundamental groups.

Section 1 is the result of a master 2 thesis I directed about chapter V of [?]. Thus it is rather
detailled and, hopefully, fills some of the gaps in the litterature.

Section 2 contains some of the most striking results about etale fundamental groups and corre-
sponds to my reading of chapter 8 to 12 of [?]. I tried and sketch most of the proofs there, insisting
on the main arguments. I hope the final result will be more readable and synthetic than the original
source.

Section 3 is just an overview of some classical results about anabelian geometry. I have not in-
cluded any proofs (nor even sketch them) for such works already exist in the litterature and are, in
my opinion, very accessible to beginners.






Notation

- For any field k£ and any algebraically field closed extension k — §2:
— k — k®: separable closure of k in §2;
— k < k': inseparable closure of k in ;
— k < k: algebraic closure of k in ©;
— I'y, = Gal(k*|k) absolute Galois group of k.

- For any integers g, > 0, I - is the group defined by the generators a1, ..., aq,b1,...,bg,v1,..., V>
with the single relation [a1,b1] - [ag, bg]y1 -7 = 1.

- Given a category C and two objects X, Y in C, we will write Hom¢(X,Y'), Mono¢(X,Y),
Epip(X,Y), StrictEpis (X, Y), Isome (X, Y) for the morphisms, monomorphisms, epimorphisms,
strict epimorphisms and isomorphisms from X to Y in C respectively.






1 Galois categories

1.1 Galois categories

Définition 1.1 A Galois category is a category C such that there exists a covariant functor F :
C — FSets satisfying the following axioms:

~

. Finite projective limits exist in C (or, equivalently, C has a final object ec and finite fiber products
exist in C).

2. Finite inductive limits exist in C (or, equivalently, finite coproducts exist in C and categorical
quotients by finite groups of automorphisms exist in C). In particular, there is an initial object

0c in C.

3. Any morphism u:Y — X in C factors as Y 5 X' "5 X, where u' is a strict epimorphism' and

u” is a monomorphism which is an isomorphism onto a direct factor of X .2

4. F s left exact (in particular F' commutes with finite projective limits).

5. F is right exact (in particular F' commutes with finite coproducts and categorical quotients by
finite groups of automorphisms and sends strict epimorphisms to strict epimorphisms).

6. For any morphism u:Y — X in C, F(u) is an isomorphism if and only if u is an isomorphism.

Given a Galois category C, a functor F' : C — F'Sets satisfying axioms (4), (5), (6) is called a fibre
functor for C. To any fibre functor F': C — F'Sets for C is associated the fundamental group of C with

base point F':
m1(C; F) := Autpe(F).

Also, to any two fibre functors F; : C — F'Sets for C, i = 1, 2 is associated the set of paths from F}
to Fy in C:
7m1(C; F1, Fy) := Isompq (F1, F3).

Example 1.2

1. For any field k, let F'S A denote the category of finite separable k-algebras. Then F'SAj is separable with fibre
functors:
Fi = HOHlFSAk (—, Q),

where 7 : k — 2 is an algebraically closed field extension. In that case:

7r1(FSAk;Fi) = Fk.

'Recall that a morphism v : X — Y in C is a strict epimorphism if for any object Z in C, the map uo : home (Y, Z) —
home (X, Z) is injective and induces a bijection onto the set of all morphism v : X — Z in C such that f op; = f o po,
where p; : X Xy X — X denotes the ith projection, i = 1, 2.

’ "
2And, in that case, the decomposition ¥ % X’ “5 X is unique in the sense that for any two such decompositions

W ) ~
Y = X] 5 X =X]][[X/,i=1, 2 there exists an isomorphism w : X] X3 such that wou} = u5 and uj ocw = uf.



2. For any connected, locally arcwise connected and localy simply connected topological space B, let FR?” denote
the category of finite topological covers of B. Then FRY? is Galois with fibre functors:

F,: FRY? — FSets ,beB.
f:X—=B — f7b)

In that case:

—

1 (FRSY; Fy) = mi°" (B, b)
(the profinite completion of the topological fundamental group of B with base point b).
3. For any profinite group II, let C(IT) denote the category of finite (discrete) sets with continuous II-action. Then
C(I1) is Galois with fibre functor the forgetful functor For : C(II) — FSets. And, in that case:

m (C(I); For) =1I.

Example 1.2 (3) is actually the typical example of Galois categories. Indeed, the fundamen-
tal group m(C, F') is equipped with a natural structure of profinite group. A basis of open sub-
groups for the profinite topology is given by the kernels Kx of the evaluation morphisms 71 (C, F') —
Autpges(F (X)), 60— 6(X) for objects X in C.

By definition of this topology, a fibre functor F': C — F'Sets for C factors as:

F FSets

N

C(mi(C, F))

Theorem 1.3 Let C be a Galois category. Then:
1. Any fibre functor F : C — FSets induces an equivalence of categories F' : C — C(m1(C, F)).

2. For any fibre functors Fy, Fy : C — FSets, m1(C; F1, Fy) # (0 and the profinite groups w1 (C, F1)
and m1(C, F») are isomorphic canonically up to inner automorphisms.

1.2 Proof of the main theorem

Let C be a Galois category and let F': C — F'Sets be a fibre functor for C.

1.2.1 Categorical lemmas
1.2.2 A few categorical lemmas

We gather here a few elementary categorical lemmas, which will be used below.

Lemma 1.4 Let C be a category which admits fibre products and u : X — 'Y be a morphism in C.
(1) u: X —Y is a monomorphism if and only if the first projection p; : X xy X — Y is an isomor-
phism.

(2) If u: X — Y is both a monomorphism and a strict epimorphism then u : X — 'Y is an isomor-
phism.

Proof (1) Observe first that, by definition, pjo Ax|y = Idx so,if p1 : X xy X — Y is an isomorphism,
its inverse is automatically Axy : X — X xy X. Assume first that v : X — Y is a monomorphism.
Then, from p; o u = p2 o u, one deduces that py = ps. But, then, py o Axy op; = Idx op1 = p;1 and
p20oAxjy op1 = Idx op1 = p1 = p2 so, from the uniqueness in the universal property of the fiber



product, one gets Ax|y op1 = Idxx, x. Conversely, assume that p; : X xy X=Y is an isomorphism.
Then, for any morphisms f,g: W — X in C such that u o f = w o g there exists a unique morphism
(f,g9) : W — X xy X such that p; o (f,g) = f and p2 o (f,g9) = ¢g. From the former equality, one
obtains that (f,g) = Ax|y o f and, from the latter, that g = p2 o (f,g) = p2oAxy o f = f.

(2) Since u : X — Y is a strict epimorphism, the map wo : home(Y, X) — home(Y,Y) induces a
bijection onto the set of all morphisms v : Y — Y such that vop; =wvopsy, where p; : X xy X =Y
is the ith projection, i = 1, 2. But since v : X — Y is also a monomorphism, the first projection

1 : X Xy X=X is an isomorphism with inverse AX|Y : X — X xy X. So AX\Y opr = Idxxy x,
which yields:
p2oAxyopt =p2
=Idxop1 =p1.
Thus p; = p2 and, using again that u : X — Y is a strict epimorphism, we get that there exists
v:Y — X such that uov = Idy. But, then, uocvou =u =wuoldx and, as u is a monomorphism
vou = Idx. O

Lemma 1.5 A Galois category C is artinian.

Proof. Let

tn+1 t to t1
RN Tnci...c_>T1c_>TO

. . . . tnt1 . .
be a decreasing sequence of monomorphisms in C. By axiom (1), T,,41 < 7, is a monomorphism

if and only if the first projection pry : Thy1 X7, Thy1—=Th41 is an isomorphism, which implies, by
axiom (4), that the first projection pri : F(Tyi1) Xp(r,) F(Tn+1))=F(Thy1) is also an isomor-
phism or, equivalently, that F(t,41) : F(Th+1) — F(T},) is a monomorphism. But since F(7Tp) is
finite, F(tn4+1) @ F(Th+1) — F(T),) is actually an isomorphism for n > 0 hence, by axiom (6),
tn+1 : Thy1 — T, is also an isomorphism for n > 0. O

Lemma 1.6 Let C be a Galois category with fiber functor F. Then, for any Xo € C, F(Xo) = 0 if
and only if Xo = 0c.

Proof. By definition of an initial object, for any X € C |Hom¢(fe, X)| = 1 so, we denote by
uy : O¢c — X the unique morphism from @¢ to X in C.

= F(uyx,) € Hompgets(F(0c), F(Xo)) = Hompsers(F(Dc), D). But, for any E € FSets, Hompgets(E, ) #
(0 if and only if FF = (. Whence F(0¢) = 0. but, then, F(ux,) = Idy is an isomorphism hence, by
axiom (6) so is ux,.

<« for any object X € C, one has a canonical isomorphism (uy,Idx) : O¢ [ X=X (with inverse the
canonical morphism ix : X50c [[X) thus F((ux,Idx)) : F(lc ][] X)>F(X ) is again an isomor-
phism. But, by axiom (5) F(0¢c[[ X) ~ F(0¢) ] F(X), which forces |F(0c)| = 0 hence F(0¢) =0. O

1.2.3 Strict pro-representability of F': C — FSets

The category Pro(C) associated with C is defined by:
- Objects: projective systems X = (¢; j : X; — Xj)ijer, i>; in C.
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- Morphisms from X = (¢;; : X; — X;)i jer, i>j to X' = ( g,j c X! — X;)i,j€[/7 >t

Hom p,o(c)(X, X') := lim lim Home(X;, X;).

i'el’ iel

Note that C can be regarded canonically as a full subcategory of Pro(C) and that F' : C — FSets
canonically extends to a functor Pro(F') : Pro(C) — Pro(FSets).

The functor F' : C — FSets is pro-representable in C if there exists X = (¢;; : Xi — Xj)ijer, i>j €
Pro(C) and a functor isomorphism:

0: HomPro(C) (la _)’C;F

and the functor F' : C — FSets is strictly pro-representable in C if it is representable and if, in addition,
the transition morphisms ¢; ; : X; — X; are epimorphisms, ¢,j5 € I, i > j.

Proposition 1.7 The fibre functor F : C — FSets is strictly pro-representable in C by the projective
system X = (dmm : Xm = Xn)mnem, m>n of connected objects in C.

Proof. The pointed category associated with C is the category CP! defined by:
- Objects: pairs (X, () with X € C and ¢ € F(X).
- Morphisms from (X1, (1) to (Xo,(2):

Homeypt (X1, (1), (X2,¢2)) = {u: X1 — X2 € Home(X1, X2) | F(u)(C1) = G2}

Let M = "{(Xn,¢m) bmem” denote the set of objects (X, () in CP* with X connected in C. We
are going to show that M is canonically equipped with a structure of projective system M = (¢,
(XmsCm) = (XnyCn))mmnem, m>n the transition morphisms of which are strict epimorphisms. This
will rely on the following:

Properties of connected objects:

1. For any Xy € C, Xo € C is connected if and only if for any (o € F(Xo) and (X, () € CP*

Monogy: ((X, €), (Xo, o)) = Isomese (X, €), (Xo, Co))

(that is (Xo, Co) is minimal in CP*).

2. For any connected object Xy € C and for any X € C,

(Z) ’HOmet((XO, Co)v (Xa C))| <1
(11) Home (X, Xo) = StrictEpiq (X, Xo).

3. For any (X;,(;) € CPt, i = 1,2 there exists (Xo, (o) € M such that
HomCPt((X07CO)7 (XH CZ)) ?é (ba 1=1,2.
Thus M will define a canonical functor morphism 6 : Homp,.,¢y(M, —)|c — F by

H(X) : HomPTO(C) (M’X) - F(X)
u= (um Xy — X)mEM = (F(um)(Cm))mEM = F(“m)(Cm)? m >> 0.

11



and it follows from property (3) that 8(X) is surjective and from property (2) (i) that 8(X) is injective
hence 0 : Homp,.qc)(M, —)|c—=F is, actually, a functor isomorphism as claimed.

It remains to prove properties (1), (2), (3) of connected objects.

1. = Write Xo = X [[ X{j. By axiom (5), o € F(Xo) = F(X() [ F(X{). Assume for instance
that {p € F(X{()). Then the canonical inclusion i : X{j < Xj in C induces a monomorphism in
CPt i+ (X, ¢0) — (Xo,¢o). Since i : Xj — Xp is a monomorphism and (Xo,(p) is minimal,
i: X() — X is necessarily an isomorphism hence X{ = 0.

<« For any {p € F(Xp) and any (X,() € CP let i : (X,() — (Xo,{o) be a monomorphism in

C. Then, by axiom (3), i : X — Xj factors as X KA X} Z Xo = X{II X{ with @' : Xo — X
a strict epimorphism and ¢” : Xj — Xy a monomorphism inducing an isomorphism onto X|.
Since X is connected either X{j = (¢ or X{j = 0c. But X = ¢ is impossible since Xy # (¢
(Co € F(Xp)). Hence X/ = ¢ and i"” : X — X is an isomorphism. But, then, i : X — Xj is
both a monomorphism and a strict epimorphism hence an isomorphism.

2. (i) For any morphisms u; : (Xo, (o) — (X, () in CP!, i = 1,2, one has an exact sequence:

Ker(ug, ug) & Xo = X.

From axiom (4),
i
F(Ker(ur, up)) < F(Xo) = F(X)

is again exact. Thus (o € Ker(F(u1), F(u2)) = F(Ker(u1,u2)) and F(i)(¢o) = (o. It follows
then from the minimality of (Xo,(p) that i : Ker(uj,ug) — Xy is actually an isomorphism that
is, U1 = ua.

(ii) By axiom (3), u : X — Xg factors as X & X} % X)[[ X! = Xo, where v’ is a strict
epimorphism and «” is a monomorphism inducing an isomorphism onto X;. Furthermore,
F(u)(¢() = F(u")(F(u)(¢)) = (o thus, by minimality of (Xo,(p), u” : X{j — Xo is actually
an isomorphism.

3. Take XO = Xy X XQ, Co = (C17<2) € F(Xl) X F(XQ) = F(Xl X Xg) (by axiom (4)) and
u; := pr; : Xo — X; the ith projection, ¢ = 1,2. Then Homep: ((Xo, (o), (Xi, &) # 0, i = 1,2.
So, it is enough to prove that for any (X,() € CP! there exists (Xo,(o) € M such that
Homert ((Xo, Co), (X, €)) # 0.

If (X, () € M then Id: (X,() — (X, () works. Else, there exists (X1,¢1) € CP* and a monomor-
phism u; : (X1,¢1) — (X, ¢) which is not an isomorphism in CP!. If the claim were not true, one
could construct inductively an infinite sequence

Un+1

(X1, Cnr1) = (X, Gn) &5 . S (X, 0) < (X,0),

with u, : X,, — X,,_1 a monomorphism which is not an isomorphis in C. But this would con-
tradict lemma 1.5. [

12



Lemma 1.8 For any connected object Xq in C:
(1) Hom, (Xo, XO) = Autc(Xo);
(2) For any (y € F(Xp), the evaluation map:

eve, - Aute(Xo) —  F(Xo)
u:Xo=Xo —  F(u)(Co)

18 1njective.
(3) For any morphism u : Xo — X in C, if u : Xo — X is a strict epimorphism then X is also
connected.

Proof.

1. By axiom (3), any morphism u : Xo — Xj in C factors as Xg “ X} v Xo = X{ 11 X{ with
v’ Xo — X{) astrict epimorphism and u” : Xj — X a monomorphism inducing an isomorphism
onto X(. But since X is connected either X = 0¢ or X/ = 0. The former implies Xy = (¢
and then the claim is straightforward. The latter implies Xy = X{ thus v” : X — Xj is
an isomorphism and u : Xo — Xp is a strict epimorphism. Hence F(u) : F(Xy) — F(Xj) is
surjective hence bijective since F'(Xy) is finite; The conclusion then follows from axiom (6).

2. For any automorphisms wu; : Xo—Xo in C, i = 1, 2 such that F(u1)({o) = F(u2)(¢p) = ¢,
u; : (Xo,¢) — (X,¢) is a morphism in CP!, i = 1, 2 hence, by property (2) (i) of the connected
objects Xg, u1 = us.

3. If not, there would exist a decomposition X = X' [[ X" in C with X', X" # (¢. Fix (o € F(Xp).
Then, by axiom (5), F(u)(¢y) € F(X) = F(X')[[F(X"). Assume, for instance, that ¢’ =
F(u)({o) € F(X'). Then, from property (3) of connected objects, there exist (X, () € M and
a morphism v : (X{,¢}) — (Xo x X’,(¢0,¢’)) in CP*. Then w := p1 o v : (X{,¢)) — (Xo, o)
and w' := pgov : (X}, ()) — (X’,¢’) are morphisms in CP*. But from property (2) (ii) of con-
nected object w : Xj — X is automatically a strict epimorphism, so is w o w : Xj — X. Since
F(uow)(y) = ¢ = F(w)({), it follows from property (2) (i) of the connected object Xy that
uow = w', which contradicts X" # (¢. O

Remark 1.9 For any X € C, write F(X) = {Ci,...,(n}. Then, from property (3) of connected objects, there
exists (Xo, o) € M such that Homep: ((Xo, o), (X,¢)) # 0, ¢ = 1,...,n. Thus the canonical evalutation map eve, :
Home (Xo, X) — F(X), u: Xo — X — F(u)({o) is surjective. But, from property (2) (i) of connected objects, it is also
injective, hence bijective.

A connected object Xy in C is Galois in C if for any (o € F(Xp) the evaluation map evg, :
Aute(Xo) — F(Xo), u: Xo=Xo — F(u)((o) is bijective. By lemma 1.8 (2), this is equivalent to one
of the following:

1. Aute(Xy) acts transitively on F'(Xy);
2. Aute(Xp) acts simply transitively on F'(Xg);
3. |Aute(Xo)| = |F(Xo)|-

13



Denote by G C M the subset of all (X, (p) € M with Xy Galois.

Proposition 1.10 For any (X,¢) € CP* there exists (Xo, (o) € G such that Homew: ((Xo, (o), (X,()) #
0. (In other words, G is cofinal in M). In particular, the fibre functor F : C — FSets is strictly
pro-representable in C by the projective system X = (¢gn : Xg = Xpn)g.heg, g>h of Galois objects in C.

Proof. Fix first (Xo, (o) € M such that the canonical evaluation map ev¢, : Home (X, X)=F(X), u:
Xo — X — F(u)((p) is bijective. Write Home (X, X) = {u1,...,un}, ¢ := F(u;)(¢o) and pr; : X™ —
X for the ith projection. Consider the diagonal morphism:

T X9 — X"
xog  +—  (ui(xo),...,un(zo))

Then, by definition, priom =u;, i =1,...,n.

By axiom (3), 7 : Xg — X" factors as X G X = [1G” with 7" a strict epimorphism in
C and 7" a monomorphism inducing an isomorphism onto the direct factor G’ of X™ in C. We claim
that G’ is Galois. The conclusion will then follow from the fact that pr; o’ : (G',{p) — (X, ;) is a
morphism in C?, i =1,...,n.

From lemma 1.8 (3), G’ is connected in C. Set v := F(n')(¢o) € F(G’). Then we are to prove
that the canonical evaluation map ev,, : Aute(G') — F(G'), w : G'=G — F(w)(v) is surjec-
tive or, in other words, for any 7 € F(G'), we are to find an automorphism w : G'>G’ such
that F(w)(yy) = +/. From property (3) of connected objects, there exists (Xo, (o) € M such that
Homey: ((Xo, o), (Xo,¢0)) # 0 and Homept ((Xo, o), (G',7)) # 0. So, up to replacing (Xo, (o) with
(X0, o), we may also assume that there exists a morphism p : (Xo, () — (G’,+) in C**. But, on the
one hand F(w o 7')({o) = F(w)(y) and, on the other hand, ' = F(p)((o). Thus, by property (2) (i)
of the connected object Xo, F'(w)(vy) =+ if and only if w o 7’ = p.

By construction, F(u;)(Co) # F(u;j)(Co), 1 < i # j < n hence, by property (2) (i) of the con-
nected object Xo, u; # uj, 1 < i # j < n. Since 7’ : Xg — G’ is a strict epimorphism, we
thus have pr; o n” # prjon”, 1 < i # j < n. But since Xy is connected, p : Xg — G is
automatically a strict epimorphism hence prj o’ op # prjon”op, 1 < i # j < n. Even-
tually, since G’ is connected F'(pr; o " o p)((o) # F(prj o o p)(Co), 1 < i # j < n, whence
{F(ui)(fo)}lgign = F(X) = {F(p?“l' e} 7I‘// ©) p)(CO)}lSiSn- From which it follows that there exists a
permutation o € S, such that F(pr; o 7" 0 p)(¢o) = F(pryu o " o 7')(¢o) and, in turn, o defines an
isomorphism ¢ : X" X™ (by permuting coordinates) such that o o " o 7’ = 7" 0 p. But, then, from
the unicity of the decomposition in axiom (3), there exists an automorphism w : G'>G’ satisfying
corn’ =n"owand worn’ =p. O

Remark 1.11 Actually, for any object X € C there exists (Xo,(o) € G such that the canonical evaluation morphism
eve, : Home(Xo, X)SF(X), u: X — Xo — F(u)(Co) is bijective.

Corresponding to the projective system (¢g.p : Xg = Xp)g.neg, g>n in Pro(C), one has a projective
system (F(¢g,n) : F(Xg) > F(Xn))gneg, g>n in Pro(FSets).
For any g € G, set G4 := Autc(X,).Then for any g, h € G, g > h, the map

evfg F(ng,h) evf_hl
Yo :Gg = F(Xy) — F(Xp) = G

14



is the unique map v, 5, : G4 — Gp making the following diagrams commute:

X, —=X,,ueq,

¢g,hl ¢g,hl

X, —> X
P o ()

and, in particular, is a group epimorphism. This endows the Gy, g € G with a structure of projective
system (g5 1 Gy = Gh)g, heg, g>h- Set G := limG,. With these notation one gets the canonical

—

isomorphism of profinite sets:

evé?) G = lim F(X,)
(ug : Xg=Xg)geg +—  (F(ug)(y))geg-

On the other hand, one can then define a map of profinite sets:

evél): m(CF) — @F(Xg)
© = (0(Xg)(Gg))geq-

Lemma 1.12 The map evél) :m(C; F) — lim F(Xy) is an isomorphism of profinite sets.

Proof. Let ©,0" € m(C; F) such that O(X,)(¢;) = ©'(Xy)({y), ¢ € G. Then, for any X € C,

there exists g € G such that the canonical evaluation morphism ev, : Home(Xy, X)=F(X), u :

X — X, > F(u)((,) is bijective. But O(X)(F(u)(() 2 F)O(X,)(¢) 2 Fu)e/(X,)() &

O'(X)(F(u)({y)), where the equalities (x) are just the definition of a functor morphism and the equality
(%) is the assumption that ©(X,)((y) = ©'(Xy)(¢y). So O(X) = ©'(X), whence the injectivity.
For any (ng)geg € lim F'(X,) there exists a unique (ug)geg € G such that F(ug)((y) =ng, 9 € G.

Then, using the canonical isomorphism eve, : Gy—=F(X,), define ©(X,)(F'(u)((y)) := F(u o uy)((y),
u € G4. Then the maps O(Xy) : F(X,)=>F(Xy), g € G are well-defined isomorphisms and, for any
g,h € G, for any morphism ¢ : X, — X}, in C, writing ¢ = a0 ¢, ;, with a € G}, one gets:
O(Xn)F(a o dgn)(F(u)((g)) = O(Xn)F (a0 dgnou)ly)

@(Xh) (a0 tgn(u) © dgn(Cy)
O(Xn)F(a o thyn(u))(Cn)
= F(
= F(

a0 g n(u)oup)(Cn)
a0 Pgp(u))(nn)

whereas:

Flaoggn) o O(Xp)(F(u)(Gg)) = Flaoggn)(F(uoug)(ly))
F(a © ng h © U)(Ug)
= F(a oty n(u)o dgn)(ng)

= F(ao 9y n(w))(nm),

That is ©(X}) o F(¢) = F(¢) o ©(X},). Using again proposition 1.10, for any X € C, there exists
g € G such that the canonical evaluation morphism ev¢, : Home(Xy, X)=F(X), ¢ : X — X; —
F(¢)(¢y) is bijective. Then, set O(X)(F(¢)((y)) = F(¢pouy), ¢ : Xy — X € Home(X,, X) and check
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that this defines an element © € 71 (C; F') such that evé”(@) = (1g)geg-

Eventually, evél) :m(C F) — @F(Xg) is an homeomorphism since evél)(K x,) is the inverse

image of (; via the canonical projection lim F(X,) — F(X,), g€ G. O
Thus, we have built a canonical isomorphism of profinite sets:

e ev?) oW m (C; F)=G

Since for any ©, ©" € 71 (C; F),

c¢ actually induces a profinite group isomorphism:

e m(C; F)=GP.
We are going to use this description of m1(C; F) to construct a pseudo-inverse to F' : C —
C(m(C; F)).
1.2.4 Pseudo-inverse to F : C — C(m(C; F))

From now on, write I := m(C; F) and II, := G¢¥, g € G.

Proposition 1.13 For any object E in C(II), there exists an object G(E) in C and an isomorphism
vE : ESFG(E) in C(I1) such that for any object X in C the map

w(X): Home(G(E),X) — Homeqn(E, F(X))
u:GE)— X — F(u)ovyg: E— F(X)

is bijective. Furthermore, this construction is functorial and defines a pseudo-inverse G : C(Il) — C

to F': C — C(II).
Proof.

1. Definition of G(E) and vg : E5F(G(FE)). First observe that it is enough to define G(E) for
connected objects F in C(II). Indeed, if

E:HEO

Eypemo(E)

is the decomposition of any object E in C(II) into connected components then

aE)= [ G&E)

EO €7 (E)
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works by axioms (2) and (5).
So let E' be a connected object in C(II) and fix e € E. Then there exists g € G such that the
continuous surjective map ev, : I - F, o — o - € factors through

eve
II—
| A
1I

g

E

and this induces an isomorphism ev : II, /Staby, (€)= E in C(IT). We set
G(E) := X4/(Stab, (€)).
Then, we have the following canonical isomorphisms in C(II):

F(X,)/(Stabr, (€))?  (by axiom (5)) (1)

I1,/Stabr, (€)

=
evg
= Gy/(Stab, (€))
=
which define v;'. The above definitions of G(F) and vg : E=>F(G(E)) do not depend on
g € G up to isomorphisms in C. Indeed, for any ¢ € G, ¢’ > g, the canonical morphism
X /(Stabr, (€))” — Xg/(Stabr, (€))° in C induces, by axiom (5) and the above, a bijection
F(Xg)/(Stabr , (€)= (E=)F(Xg)/(Stabr, (¢)) hence, by axiom (6), is already an isomor-
phism in C.

2. For any object X in C, the map w(X) is bijective.

(a) w(X) is injective. Indeed, for any two morphisms u;, us : G(E) — X in C such that

w(X)(u1) =vgoF(u)
=w(X)(u2) =7go F(ug)

F(u1) = F(ug) so the canonical map:
Ker(F(u1), F(u2))=F(G(E))
is an isomorphism hence, by axioms (5) and (6), so is:
Ker(uy, ug)=>G(FE)

whence u; = ug : G(E) = X.

(b) w(X) is surjective. Fix € € E and for any morphism o : £ — F(X) in C(II) set ¢ := a(e) €
F(X). Then one can always find g € G and a morphism u : (X4, (;) — (X,¢) in CP* such
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that, in addition, the action of II on E factors through II,. But u : X, — X also factors

through
| u/T .
Xg/(Stab, (u))

where (Stabr, (u))” C Gy is the subgroup of all ¢ € Gy such that w oo = u. Since
a: E — F(X) is a morphism in C(II), for any ¢ € Ily, o - € = € implies that o - ( = ¢ but
¢ = F(u)(¢y), whence F(uoo)((y) =0-( =¢( = F(u)({s). Thus, by minimality of (Xg,(,),
uoo = u. So (Stabry,(¢))? C (Stab, (u))°. This yields a canonical morphism

Uo 1 G(E) = X,/ (Stabr, () — X,/(Stabr, (1)) % X.

It remains to check that F'(uq)ovg = a. As both F(u,)oyg ans a are Il -equivariant and as
I1, acts transitively on E, it is enough to prove that F'(uq) o ye(€) = a(e) = ¢ = F(u)({y)-
Using (1), one has: yp(e) = F(p)((y), where p : Xy — X,/(Stabm,(€))® denotes the
quotient morphism in C. As a result:

F(ua) o ve(€) = Fua op)((y) = F(u)(Cy).

3. Functoriality. For any morphism o : E — E’ in C(II), ypoa : E — F(G(E')) is again a morphism
in C(IT) hence, since w(G(E")) is bijective, there exist a unique morphism G(«) : G(E) — G(E')
in C such that vz o a = G(a) o yg. Then, for any sequence E % E’ o B of morphism in C(IT)
one has G(o/ o) oyg = ygr o o and G(o') o G(a) oyp = G(&/) oygr o v = ygn 0 & 0 @,
whence, by unicity, G(¢/ o o) = G(¢/) o G(«). That is, G : C(II) — C is a functor. One then
checks that v : Ideqn—F o G is a functor isomorphism. Similarly, for any object X in C, set
ox = w(F(X)) MIdpx)) : G(F(X))=X then, § : G o F=Ide is also a functor isomorphism.
Furthermore, it follows from the definitions that for any objects E in C(II) and X in C one has:

Yrx) o F(0x) = Idp(x) and dgp) o G(ve) = ldgg). U

1.2.5 Unicity

Proposition 1.14 Let C be a Galois category and F, F' : C — FSets two fibre functors defining profi-
nite groups Il := w1 (C; F) and II' := m(C; F') associated with universal coverings (¢qpn : (Xg,(q) —
(Xn:Ch))gneg, g=h and (¢ 2 (X, Cr) = (XGrs Gur)) g hegr, g >ne Tespectively. Then there is a profinite
group isomorphism 1111 canonical up to inner automorphisms.

Proof. From proposition 1.13, one may assume that C is C(II), F': C — F'Sets is the forgetful functor
For : C(Il) — FSets and (¢gp : (Xg,{g) — (Xn,Cn))gheg, g>n is the projective system induced
by the normal open subgroups of II pointed by the identity element 1 i.e. (¢nar : (II/N,1) —
(II/M, 1)) N<M, N, M normal open subgroups in 11- For each ¢’ € G' let g : II — F’(X!’J,) be the morphism
of Pro(C(II)) defined by a, (1) = ¢;,. Since X, is connected, agr : II — F'(X],) is an epimorphism
in Pro(C(II)) hence so is o := lim oy : IT — lim F'(X,,). Write ¢ := ()geq € lim F'(X,/). Then

—
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Stabri(¢') C Il is a closed subgroup such that o : IT — lim F'(X,) factors through an isomorphism in
Pro(C(II)):

I & lim F/(X}).
I /Stab (¢') :

The functor isomorphism Hom p,.o(c () (lim F'(X,), —)=Homp,ocry) (I1/Stabn(¢'), =), u — uoa

thus identifies F with the functor X > X>tabn(¢) 1y particular, since F'(X) = () if and only if X = ()
and since for any normal open subgroup N < II, II/N # (), one gets F'(II/N) = H/NStab“(g) # 0.
Hence limH/NSta‘bH(g) = 115tabn(¢) # 0, which forces Stabri(¢’) = 1. As aresult, o : TT=lim F'(X},)

is an isomorphism in Pro(C(II)) and one gets a profinite group isomorphism:

D, : I1'r = AUtPro(C(H)) (&l) = AU-tPro(C(H))(H) =1

o — g_lag.

Furthermore « (hence ®,, is uniquely determined by g and replacing ¢ " by g " amounts to replacing
a by o and ®, by (a1a/) 1@, (—)(a a/) (with a~la/ € IP). O

1.3 Fundamental functors and functoriality

Let C be a Galois category. Then, given a fibre functor F' : C — F'Sets, we fix a universal covering
<¢F,g,h : (XF,97CF,9) — (XF7h,CF7h))g7 heGr, g>h fOl‘ F: C — FSets.

1.3.1 Fundamental functors

Proposition 1.15 Given Galois categories C, C' and a covariant functor H : C — C', the following
assertions are equivalent.

(i) There exists a fibre functor F': C' — FSets for C' such that F' o H : C — FSets is a fibre functor
for C.

(i1) For all fibre functor F' :C' — FSets for C', F' o H : C — FSets is a fibre functor for C.

(i1i) H : C — C' is exact (that is is left exact and right exact).

Proof. Let us show that (iii) = (i) = (¢) = (¢9¢). The implication (i) = () is straightforward.

(i) = (i7i). One has to prove that H commutes with kernels and cokernels. So, let uy, ug : X =Y
be morphisms in C and let F’ : (' — FSets be a fibre functor for C’ such that F' o H : C — FSets is
a fibre functor for C. Since F’ o H commutes with kernels, the sequence

/ FloH(i) ., F'oH(u1),F'oH (u2) ,
F'o H(ker(uj,u2)) —  F' o H(X) % F'o H(Y) (%)
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is exact is F'Sets. On the other hand, H(uy) o H(i) = H(uz2) o H(i), whence a canonical factorization
in C":
H(u1),H (u2)

Ker(H(u1), H (u2)) H(X)

H (ker(u,u2))

H(Y) (xx)

But, in view of (%) applying F’ to (*x), one gets that F’(v) is an isomorphism in Fsets hence, by
axiom (6), v : H(ker(u1, ug))—ker(H (u1), H(u2)) is an isomorphism in C’. The same argument shows
that H : C — C' commutes with cokernels.

(74) = (ii). Assume now that H : C — (' is exact and let F' : ' — FSets be a fibre functor for C'.
Then F'oH : C — FSets is again exact. So it only remains to check axiom (6) for F'oH : C — FSets.
This will follow from the fact that, if X # (¢ then H(X) # (¢/. Indeed, in general, X # (¢ if and
only if the canonical morphism vy : X — ec is an epimorphism. But as H : C — C’ is right exact, it
transforms epimorphisms into epimorphisms and as it is left exact it transforms ec into ecr. Now, let
u: X — Y be a morphism in C such that F' o H(u) : F' o H(X)>F' o H(Y) is an isomorphism in
FSets. Hence, by axioms (6) applied to F' : C' — FSets, H(u) : H(X)=H(Y) is an isomorphism in

C. From axiom (3), u factors as u : X 5 Y'Y = Y/'[[Y” with ' a strict epimorphism and u” a

monomorphism inducing an isomorphism onto the direct factor Y of Y. Since H : C — (' is exact, the
H ! H 1
factorization H(u) : H(X) ™) 5y ") H(Y) = H(Y') [[H(Y") is again the one given by axiom

(3) for H(u) in C'. In particular H(Y") = (¢ hence Y = ()¢ and v : X — Y is a strict epimorphism.
Assume it is not a monomorphism. Then there exists two distinct morphisms in C u; : W — X,
i = 1,2 such that uy ou = ug ou. Since H(uj) o H(u) = H(uj ou) = H(ug ou) = H(uz) o H(u)
and H(u) : H(X)>H(Y) is an isomorphism, H(u;) = H(ug2) hence ker(H (u1), H(uz)) = H(X).
But, as well, ker(H (u1), H(u2)) = H(ker(ui,ug)). So, if i : ker(uj,u2) < X denotes the canoni-
cal monomorphism, H (i) : H(ker(uy,ug))—=H(X) is an isomorphism hence, by the argument above,
i : ker(uj,ug) — X is also a strict epimorphism thus, by lemma 1.4 (ii), an isomorphism, which
contradicts the fact that w; and we are distinct. So u : X — Y is also a monomorphism hence an
isomorphism. [J

A functor H : C — (' satisfying properties (i), (ii), (iii) of proposition 1.15 is called a Fundamental
functor from C to C'.

Let u : 1" — II be a profinite groups morphism. Then any F € C(II) can be endowed with a
continuous action of II' via w : II' — II, which defines a canonical fundamental functor:

H, : C(Il) — C(I').
Conversely, let H : C — C’ be a fundamental functor. Let F’ : C' — FSets be a fibre functor for C’,
F:=F oH:C— FSets and set Il := 7 (C; F), Il' := 71 (C'; F'). Then for any © € II', ©® o H € II,
which defines a canonical group morphism:
wg I — 11,
which is continuous since for any X € C, u;II(K x) = Kp(x)- And one immediately checks that:

ug, =u: ' =10
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and that the following diagram commutes:

Huy
C(I1) —=C(Ir)

1k
C———>C.

H

Thus a functor H : C — C’ is a fundamental functor if and only if there exists a profinite groups
morphism u : II" — II such that the following diagram commutes:

c() - c()

FT TF

c——C.

In the next §, we are going to compare the properties of the fundamental functor H : C — C’ and
of the corresponding profinite group morphism u : IT" — II.

Example 1.16

1. Any field extension ¢ : k — k' defines a canonical functor

H: FSA; —  FSAp
k— A — k/<—>A®k7¢]€/.

and for any algebraically closed field extension i’ : k' < €, one has:
FyooH = HomFsAk, (7 ®Rk,¢ k‘l, Q)

w Hompsa, (—, Q) = Fyog,

where the equality (*) comes from the universal property of tensor product. Hence H : F'SA, — FSA; is a
fundamental functor. In that case, the corresponding profinite groups morphism is just the restriction morphism:

ks Fk/ — Fk

2. Any continuous map ¢ : B’ — B of connected, locally arcwise connected and locally simply connected topological
spaces defines a canonical functor:

H: FRg —  FRYP
f:X—>B +— p:XxspeB —B.

and for any b’ € B’, one has:

FyoH(f) =p; (b/)
= {(z,V') | = € X such that f(z) = ¢(b')}
= [T (o(®).
Hence H : FRp — FRp/ is a fundamental functor. In that case, the corresponding profinite groups morphism is

just the canonical morphism:

—

b1 P (BY) — mi (B, o(1))
¢(b)).

induced from ¢ : 7t°?(B’,b') — w.°P(B,
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1.3.2 Functoriality

Lemma 1.17 With the above notation:

1. For any open subgroup S C II, Im(u)) C S (resp. Norp(Im(w)) C S) if and only if
Homepe ((ec, ), (H(I1/S), 1)) # O (resp. H(I1/S) is totally split in C). In particular, uw : 1TI' — 11
is trivial if and only if for any object X in C, H(X) is totally split in C'.

2. For any open subgroup S’ C II', Ker(u) C S’ if and only if there exists an open subgroup
S C I such that Homep: ((H(I1/S),1)o, (IU'/S’,1)) # O(where, for any (X,¢) € CP*, (X,()o =
(Xo,¢), where Xy denotes the connected component of ¢ in X). If u : II' — 11 is an epi-
morphism, then Ker(u) C S’ if and only if there exists an open subgroup S C I such that
Isomept ((H(11/S),1)0, (I'/S",1)) # 0. In particular, u : I < II is a monomorphism if and
only if for any connected object X' € C' there exists a connected object X € C and a connected
component H(X)o of H(X) in C such that Isomer ((H (X ), X') # 0. If, furthermore, u : I — 11
is an epimorphism, then u : II' — II is an isomorphism if and only if H : C — C' is essentially
surjective.

Proof. Recall that, given a profinite group II, a closed subgroup S C II is the intersection of all
open subgroup U C II containing S thus, in particular, {e} is the intersection of all open subgroups
of II. This yields the characterization of trivial morphisms and monomorphisms from the preceding
assertions in (1) and (2).

For the first assertion of (1), if Im(u) C S then for any ©" € I’ ©'-S = u(0’)S = S hence the canon-
ical inlcusion II'/II" — H(I1/S) = I /u~1(S) in C(IT") induces a morphim (II'/II', 1) — (H(I1/S),1)
in C'P'. Conversely, if Homep ((ec, *), (H(I1/S),1)) # 0 then let w : (I'/II',1) — (H(I1/S), 1) in C'PL.
For any ©' € I', one has ©’ - 1 =0’ - u(1) = u(©®’) = 1 so Im(u)) C S.

For (2), if Ker(u) C S’ then one has a canonical isomorphism (II'/S’,1)>(Im(u)/u(S’),1) in
C’P'. In particular, since both II" and S are compact, u(S’) C Im(u) is a closed subgroup of finite
index in Im(u) hence is also open in Im(u) and there exists an open subgroup S C II such that
S NIm(u) C u(S"). By definition, the connected component of 1 in H(II/S) in C" is Im(u)S/S ~
Im(u)/S N Im(u) ~ I'/u=t(S). But «=1(S) = v 1(S NIm(u)) C S, whence a canonical mor-
phism (Im(u)S/S,1) — (II'/S’,1) in C’P*. Conversely, assume that there exists an open subgroup
S C II and a morphism (Im(u)S/S,1) — (II'/S’,1) in C"* then, by definition of pointed morphisms,
Ker(u) C u=1(S) C S. If Im(u) = II, one can take S = u(S’). Eventually, note that since Ker(u) <1 II’
is normal in I, the condition Ker(u) C S’ does not depend on the choice of ( € F(X) defining the
isomorphism X'=II'/S’. O

Proposition 1.18

1. The following three assertions are equivalent:
(i) w: 1" — 11 is an epimorphism;
(ii) H : C — C’ sends connected objects to connected objects;
(i) H : C — C' is fully faithful.

2. u: ' < II is a monomorphism if and only if for any object X' in C' there exists an object X
in C and a connected component X{ of H(X) such that Home (X(), X') # 0.
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3. w: II'>II is an isomorphism if and only if H : C ~ C' is an equivalence of categories.

4. If C B e N C" is a sequence of fundamental functors of Galois categories with corresponding
sequence of profinite groups I <~ II' & II”. Then,
- Ker(u) C Im(u) if and only if for any object X in C H'(H (X)) is totally split in C”;
- Ker(u) D Im(u') if and only if for any connected object X' in C' such that H'(X') admits

a section, there exists an object X in C and a connected component X{, of H(X) such that
HOmC/(X(/),X,) 75 @

Proof. Assertion (2) follows from lemma 1.17. Assertions (3) and (4) follow from lemma 1.17 and (1).
So we are only to prove (1).

(i) = (ii). Assume that u : II" — II is an epimorphism. Then, for any connected object X in C(II), II
acts transitively on X. But H(X) is just X equipped with the IT'-action ¢’ - z = u(¢’) - . Hence II'
acts transitively on H,(X) as well or, equivalently, H(X) is connected.

(ii) = (i). Assume that for any connected object X in C(IT) H,(X) is again connected in C(II"). This
holds, in particular, for any finite quotient II/N of II (with N < II a normal open subgroup) that is,
the canonical morphism uy : II' = II Ty IT/N is a continuous epimorphism hence so is u = {inu N-

(i) & (iii) is straightforward. O

Given a Galois category C with fibre functor F': C — F'Sets and X € C connected, let Cx denote
the category of X-objects that is the category defined by:
- Objects: Morphism f:Y — X in C;
- Morphisms from f: Y’ — X to f: Y — X:

Home, (f',f) ={¢:Y' =Y € Home(Y',Y) | fop = f'}.
And for any ¢ € F(X), set

F(X,Q: CX — FSets
fY =X = F(H)HO).

Proposition 1.19 Cx is Galois with fibre functors Fix ¢ : Cx — FSets, ¢ € F(X). Furthermore,
the canonical functor
H: C — Cx
Y — p: Y xX—-X
satisfies, for any ¢ € F(X) Fix ¢cyoH = F and induces a profinite group monomorphism: m1(Cx; Fx,¢)) —
m1(C; F) with image Stab, c.r)(C)-

Proof. Just observe that if (¢rgn : (Xrg,Cri) — (XFh,Crh))g, heGr, g>h 1S a universal covering
for F then with Gr, , C G the set of all g € Gp such that Homen ((Xy,(g), (X,¢)) # 0 de-
fines a universal covering (¢pgn : (Xrg.Crg) — (Xrn,Crn))g, hEGr x ¢y 92D for Fix ). Further-
more, for any g € Gp ., identify as usual (XFrg:Crg) — (X,() with the canonical morphism

m1(C, F)/Staby, ¢, 1) (Crg) — m1(C, F) /Stabz, ¢ r)(¢) and, thus, Fix ¢)(XF,g) with Staby, ¢ ) (€)/Stabr, ¢, ) (Cryg)-
Through the above identification, m1(Cx, Fix ¢)) = im Fix ¢)(XFg) = lim Stab,, ¢ ) (¢)/Stabz, ¢,r)(Crg) =

Stabr, c,r)(¢)- Also, Fix,¢)oH >~ F thus H : C — Cx is exact and uy : m1(Cx, F(x,¢)) = m(C, F) is
nothing but the canonical inclusion Stab, ¢ r(¢) — m1(C, F). O
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2 Examples

2.1 Topological covers

The formalism of Galois categories is derived from what occurs for topological covers. In the following,
all the topological spaces will be assumed to be separated.

Recall that the topological fundamental group of X based at x € X is the group WiOP(X, x) of ho-
motopy (with z fixed) classes of closed paths based at xz. If X is arcwise connected then, given

two points zp, z1 € X, any path ¢ : [0,1] — X from zp to x; defines a group isomorphism
™ (X, 20)=m ™ (X, 21), 7] = [ Y]l

Example 2.1 Topological groups can sometimes be computed explicitly.

1. If X is a compact Riemann surface with genus g menus 7 points then 7i°”(X,z) = Ty ., where I'y . is the group
with generators v1,...,7vr, u1,...,u4,%1,...,0y and single relation

Y- ye[un, vl - fug, vg] = 1.
Note in particular that the only cases when 7i°(X, z) is abelian are for (g,r) = (0,0), (0,1),(0,2), (1,0). These
are special cases of example (3) below.

2. If X = U, is the configuration space for r unordered points on the projective line then wiap()Q z) = H, is the
so-called Hurwitz braid group given by the generators Q1, ..., Q-—1 and defining relations

(1) QiQi+1Q: = Qi+1QiQit1 fori=1,...,7r—2
(2) QiQ; =Q;Q: for i,j =1,..,r — 1 with |j —i| > 1
(3) QiQ2- Qr-1Qr—1--@Q2Q1 =1

3. If X is a topological group then m°?(X, ) is abelian.

An arcwise connected topological space with trivial topological fundamental group is said to be simply
connected.
Given a topological space X, let Rg?p denote the category of topological covers of X and, for

any x € X, let Rig?x) denote the associated pointed category. Also, write F), : Rg?p — Sets for the

functor sending p: Y — X € Rt)?p to F(p) = p~*(z). Then F, naturally factors through the category
Chse(mlP(X x)) of (discrete) mi(X, z)-sets. The natural action of 7iP(X,z) on F,(p) is given by
monodromy.

Lemma 2.2 (monodromy) For anyp:Y — X € Rg?p, any path ¢ : [0,1] — X and any y € F.)(p),

there exists a unique path ¢, : [0,1] — Y such that po ¢, = ¢ and ¢,(0) = y. Furthermore, if
c1,¢2 1 [0,1] — X are two homotopic paths with fized ends then ¢ 4(1) = é2,4(1).

In particular, one gets a well defined action py(p) : @ (X, x) — Autgers(Fy(p)) sending [v] €
H(X, 1) 10 p(0)(1]) : ¥ > Fy(1) and py defines a group morphism py - TP(X,x) — Autiee(Fy),

(V] = pe(=)([A])-

And, actually, one has:

Proposition 2.3 Assume that X is connected, locally arcwise connected and locally simply connected.
Then Fy : Rg?p — Sets induces an equivalence of categories

F, : RYP =~ CUs¢(7lP (X, z)).
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Proof (sketch of). A universal covering for X pointed at x is an element (py : X — X, i) € Rg?x)
such that for any (p: Y — X,y) € Rgg@, there exists a unique morphism from (px,Z) to (p,y) in
Rtop

(X,z)°
Step 0: basic facts about topological coverings.

(X,
and only if py o (71 (Y1,91)) C p2 o (m1(Yz,y2)) and Tsom prey )((pl 1) (p2,92)) # 0 if and only if
pro(m(Y1,y1)) = p2 o (m1(Y2,42)).
In particular, any (p: Y — X,y) € R?))?x) with Y simply connected is a universal covering for
X pointed at x.

1. For any (p; : Y; — X,y;) € RtoP o) with Y; connected, i =1, 2 HomRzop )((playl)a (p2,y2)) # 0 if

2. Forany (p:Y — X,y) € R'%?

(X.2) with Y connected, p : Y — X is Galois if and only if po(m1 (Y, y))

is normal in 7% (X, ).
In particular, if Y is simply connected then p : Y — X is automatically Galois.

3. Forany (p: Y — X,y) € R’EOp ) with Y” connected, one can show that for any [v] € Nor aton(X, )(po
(miP(Y,y))) there exists a unique u([y]) € AutRégp (p) such that p(y) = 4,(1). This defines a
group morphism u : Norﬂiop (X.2) (po (TiP(Y,y))) — Aut Rior (p) which fits in the following canon-
ical short exact sequence:

1. 7rtop(y y) P2 Nor aton (x, )(po (m1(Y,v))) N Authop(p) — 1.

X
In particular, if Y is simply connected then w : WiOp (X, x)=Aut piop (p) is an isomorphism.
X

Step 1: Universal covering. The hypotheses on X ensure the existence of universal coverings. They

can be explicitly constructed as follows. Let X denote the set of all paths c : [0,1] — X with
¢(0) = 2 modulo homotopy with fixed ends. One thus gets a well-defined map px : X - X sending
[c] € X to p([]) = ¢(1). X can be endowed with a topology in such a way that px : X — X
becomes a topological cover. For any [c] € X, let Us(jg) be a simply connected open neighbor-
hood of p([c]) € X. Since Up(q is simply connected, for any u € Upq) there exists a path
(p([¢]),u) : [0,1] — X, unique up to homotopy with fixed ends, from p([c]) to w. This yields a
well-defined map @usy,,, 5 (Up(ep) — Up(iap x 5 (3([e])) sending [¢] to (5([¢'), [(3([c]). (D))
which is actually bijective (with inverse map the map Uy x5 (5([c])) — 51 (Up()) sending (u, [¢])
to [][(u, ]5([ '1))). Furthermore, for two simply connected open neighborhoods Uﬁl([c]), U;%([c]) of p([c]),
(I)U;([c]) ° CI) UZ e : Up([ <))
exists a unique topology on X such that the p~1( Up(ig)) are open and the QU ﬁ_l(Uﬁ([c])) —

N U~([C]) P H(p([c]) — Ul([c]) N Ug([c]) x p~Y(p([c]) is continous. Hence there

Us([e)) % p Y(p([c])) are homeomorphisms. For this topology X is separated, simply connected and
p: X — X is a topological cover. Furthermore the isomorphism u : 71 (X, z)=Aut Rio (p) is just given
by the translation 71 (X, z) x X — X, ([7],[d]) — [d][7].

Step 2: F, is essentially surjective. Since F, commutes with finite coproduct, it is enough to show

that the connected objects in C#¢(mi® (X, z)) are in the essential image of Fy. So let E be a tran-
sitive 71’ (X, x)-set. Then, for any e € E one has Stab rtor(x x)(e) C m%(X,x) = Aut piop (p) and
X, (X,2)

writing the corresponding quotient cover pgiqp N OR : X /Stabﬂ_top(x x)(e) — X one check that
T , T 1 )

FE.(Pstab 1o )(e)) and E are isomorphic in C%5¢(x! (X, x)).
] T
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Step 3: F, is fully faithfull. From step 2, this amount to showing that for any subgroups Ny, No C

7% (X, z), the canonical map
F;E : Hong?P (ﬁNl )f)N2) — homcdisc(ﬂ'i()p(x,x)) (Wiop(X, Q?)/Nl, W;OP(X, CL')/NZ)

is bijective. For this, just observe that the map @, : Homcdisc(ﬂwp(x ) (Wiop(X, x)/Ny, WiOp(X, x)/Ng) —

1 ’ - ~
hompbggp(ﬁNl,ﬁNz) sending f : mi(X,z)/N; — m(X,x)/Ny to ®,(f) : X/Ni — X /Na, [c]N}
[c] f(1) N3 is an inverse for F,. O

Corollary 2.4 Assume that X is connected, locally arcwise connected and locally simply connected. Then
the group morphism p, : m (X, z) — Autpe(Fy) is an isomorphism.

Also, the following corollary immediately follows from proposition 2.3.

Corollary 2.5 Assume that X is connected, locally arcwise connected and locally simply connected.

Then the category Rg(wp of all finite topological covers of X is Galois with fundamental group =P (X, ).

2.2 Etale covers

Let X be a connected, locally noetherian scheme and R$ the category of finite etale covers of X. For
any geometric point x : spec(Q) — X, let F, : R{ — FSets, f: Y — X — Y,(Q) denote the functor
”geometric fiber over x”. Then:

Theorem 2.6 The category RS is Galois with fibre functors F,, x € X(Q), Q = Q.

Proof. See [Mur67, p. 54-63]. One has to check axioms (1) to (6) of the definition of a Galois category.
Axiom (1): R$ has a final object Idx : X — X and, for any f; : YV; — X € R%, i = 1,2, one classically
has Y1 xp, xp, Yo — X € R%.

Axiom (2): R has an initial object @) and, for any f; : ¥; — X € R%, i = 1,2, one straightforwardly
has that Y1 [[Y2 — X € R¢.

Lemma 2.7 Universal quotients by finite groups exist in RSt. Furthermore, such quotients are strict
eptmorphisms in R%.

Proof. Let f:Y — X € RY and let G be a finite group such that o : G — Auth{t(f). We have to
show that there exists f : Y/G — X € R{ and 7 € Hompe: (f, f) such that for any f': Y’ — X and
for any 7’ € HomR%(f, 1) with 7" o a(g)(f) = 7’ o f, g € G there exists a unique 7 € HomR%(f,f’)
satisfying @ om = 7.

1. Y =spec(A), X = spec(B): Then one straightforwardly checks that f : Y := spec(A%) — X is
the universal quotient of f : ¥ — X in the category of X-schemes. It remains to prove that
f € Rt Since f : Y — X is finite, so is f : spec(A%) — X it actually only remains to prove
that f : X := spec(AY) — X is etale.
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(a)

Let X’ = spec(B’) — X be a flat, affine base change and consider the following cartesian
diagram:
f/

Y/Ll)Y/LX,

Lol

Y —XX —X.
o X 7
f

Let o/ : G — AUtRﬁﬁ,( ') denote the canonical induced action of G on Y’. Then f
Y' — X' is the universal quotient of f' : Y' — X' in the category of X'-schemes that is,
Y' = spec((A®p B)Y).

Indeed, one has the exact sequence of B-algebras:

Ida—g-
0 AG _, g =eeclia g)@A
geG

Hence, since B — B’ is a flat B-algebra, one gets the exact sequence of B’-algebras

Idpa—g )Qplda,
0—)AG®BB,—>A®BB,ZQEG( A_}g) pldg GBA®BB/’
geG

whence A9 ®p B’ = (A®p B")C.

Let § € Y. Then X’ := spec(Oy ?@) — X is an affine flat base change as above and
there is a unique 7' € Y lying above ¥ in Y. Furthermore, Oyy = O v In particular,
f:X — X isetale at 7 € Y if and only if f X' — X' is etale aty € Y. Asa result, one
may assume that B is a local noetherian ring with mazximal ideal say Mp.

It also follows from faithfully flat descent that for any faithfully flat morphism X’ — X,
Y —-X is etale if and only if 7Y — X'isetale. Since spec(B) — spec(B) is faithfully
flat, where B denotes the completion of B with respect to its maximal ideal Mpg, one may
assume that B is a complete local noetherian ring.

Let z € X be the closed point of X. Since f:Y — X € R, for any y € f~1(x), k(y)/k(z)
is a finite separable extension so one can choose a finite Galois extension K/k(z) such that
k(y) — K,y € f~'(x). Then there exists a flat local finite B-algebra B — B’ such that
B'/Mp = K [EGA3, Prop. 10.3.1, Cor. 10.3.2]. Thus, by step (b) above, one may assume

that k(y) = k(z), y € f~ ().

Now, one has:

EBB— O Ds

yef~1(z) Oef~1(2)/Gye0
Hence:
A= P @PHB“= P B
Oef~1(z)/G yeO Oef~1(z)/G

Whence the conclusion.
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2. General case: Reduce to case 1. by using that f : Y — X € R¢ is finite hence affine (local
existence) and the unicity of universal quotient up to canonical isomorphism (glueing).

Eventually, observe that 7 : ¥ — Y € Re?t hence is open so 7(Y) is an open subscheme of Y co-

inciding with the scheme-theoretic image of w. If 7(Y) # Y then, by the universal property of the
scheme-theoretic image 7(Y) — X would satisfy, as well, the universal property of quotient in R%: a
contradiction. So 7 is faithfully flat hence a strict epimorphism in Rgf-. O

Axiom (3): For any f; : Y; —» X € R{, i = 1,2 and for any u € Homp&t(fl,fg), u:Yy — Yy € RY
hence is both open and closed. In particular, with Yy := u(Y7), Yy := Y2 \ Y3, one has Yo = YJ [ [ Yy

Y2’:U/ Uyl gt
and u factors as u : Y3 v Y] % Yo =YJ[]Yy with « a faithfully flat morphism hence a strict

epimorphism in R and u” an open immersion hence a monomorphism in R%.

Axiom (4): Just observe that F,,(f : Y — X) = 0 if and only if Y = 0 and that F, commutes with
fibered products.

Axiom (5): The fact that F, commutes with direct sums and transforms strict epimorphisms into
strict epimorphisms is straightforward. So it only remains to prove that F, commutes with universal
quotients by finite groups of automorphisms.

So, let f:Y — X € R{ and let G be a finite group such that o : G — Aut Rg{t( f). By functoriality,

one gets o : G — Autpges(Fi(f)) and, since 7w : f — f is the universal quotient of f by G in R%,

one has (i) Fy(m) : Fy(f) — F.(f) is surjective and (ii) for any g € G F,(m) o a(g) = F,(m) hence

F,(m) : Fy(f) — Fy(f) factors canonically through F,(f)/G — Fy(f). And, actually, F,.(f)/G=Fx(f)

is an isomorphism. Indeed, this follows from:

Lemma 2.8 Let f: Y — X € R$ and let G be a finite group such that o : G — AutR%(f). Then:
(i ) G acts transitively on the fibers of m: Y — Y/G € Ri,t/G;

(ii) For anyy € Y, set Dr(y) := Stabg(y) C G for the decomposition group of y. Then k(y)/k(m(y))
is a Galois extension and the canonical morphism Dy (y) — Gal(k(y)|k(w(y))) is an epimorphism.

Proof. As in the proof of lemma 2.7, one may assume that ¥ = spec(4), Y = spec(AY) and
7= M € spm(A%) is a closed point.

()Let y; = P; € 7 '(g), i = 1,2. Then, as A® — A is a finite A%-algebra, it follows from the
going up theorem that P;, Po are also maximal ideals. Assume that P; # ¢gPs, g € G then, by the
Chinese remainder theorem, there exists a; € P1 \ UgeggP2. Hence ngG ga; € ASNP\ AN Py a
contradiction.

(i) Let P € 7~ '(y). Then k(y)/k(y) is a finite separable extension so there exists a € A such
that k(y)(a) = k(y), where @ denotes the reduction of @ € A modulo P. The polynomial P, :=
[[yec(T —ga) € AG[T] splits completely over A and its reduction P, € k(7)[T] modulo P N A splits
completely over k(y) and has root @ hence k(y) = k(y)(a) is normal over k(7).

By definition of D,(y), P # gP, g ¢ Dx(y) hence, by the Chines remainder theorem, there
exists a; € A such that a; = @ mod P and a; = 0 mod ¢~ 'P, g ¢ D.(y). By construction
k(y) = k() (a) = k(y)(a1). Also, P,, € k(%)[T] has roots @; hence, for any o € Gal(k(y)|k(¥)), o(a1)
is again a root of P4, i.e. there exists g, € G such that g,a; = o(a1). But, by construction of aj,
gar =0, g ¢ D.(y) whereas a; # 0 hence o(a;) # 0, which shows that g, € D.(y) O
Axiom (6): Forany f; : V; - X € R¢,i=1,2letu € HomR%(fl, f2) such that Fy(u) : Fi(f1)=>F:(f2)
is bijective. Recall that u:Y; — Y5 € Rf}g hence the above hypothesis shows that v : Y7 — Ys € Rf,g
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has rank 1 hence is an isomorphism. [
For any geometric point x : spec(Q) — X,

(X, z) := m (RY; Fy)
is the etale fundamental group of X with base point x. Similarly, for any two geometric points x; :
spec(§;) — X,i=1,2,
T (X321, 29) 1= w1 (RS Fay ), Fiy)

is the set of etale paths from x1 to x9. (Note that 1 and Q9 may have different characteristics).

It follows from theorem 1.3 that 71 (X;xz1,22) # 0 and that m1 (X, 21)>m (X, z2) canonically, up
to inner automorphisms.

Eventually, given a morphism ¢ : X’ — X of connected, locally noetherian schemes and a geometric
point 2’ : spec(2) — X', the base change functor H(¢) : R — R{, f:Y > X —pa: Y Xpx s X' —
X' satisfies:

)
Fp o H(¢)(f) = (Y xsx,0 X )ar () = Ya(Q) = Fyry(f),

where the equality (x) follows from the universal property of fibre product. Hence H(¢) : R{ — R,
is a fundamental functor and one gets, correspondingly, a canonical profinite group morphism:

m(9) : (X', 2') — m (X, é(x)).
Note that if ¢ : X’ — X € R$ then m1(¢) : m(X',2') — m (X, ¢(x)) is a monomorphism with
image Stab, (x,¢(x))(*)-

2.2.1 Spectrum of a field

Let k be a field and set X := spec(k). Then:

Proposition 2.9 For any geometric point x : spec(2) — X, there is a profinite group isomorphism:
cp (X, ) ST,

canonical up to inner automorphisms.

Proof.

1. Consider the canonical diagram of schemes:

X spec(Q2)

T

spec(k®) <— spec(k).

With these notation, it follows from theorem 1.3 that (X, )57 (X,Z), canonically up to
inner automorphisms. Hence one can assume that € = k.
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2. By definition of the etale fundamental group, one has:

B! (Xv .’E) - AUtht(HomSch/k(SpeC(k)a _))

© Autgen i (spec(k))

= Aut(k|k)
(%) T,

where the equality (%) follows from Yoneda lemma and the equality (#*) is the canonical
restriction-to-k* isomorphism. [

2.2.2 Normal base scheme

Fix an integral scheme X with function field k(X). For any f:Y — X € FRx let R(Y) denote the
ring of rational functions on Y i.e. the direct product of the local rings of the generic points of Y
it comes equipped with a natural structure R(f) : k&(X) — R(Y) of k(X)-algebra and this defines a
functor R: FRx — FSAyx)-

Given a finite field extension i : k(X) < L, recall that the normalization m; : X* — X of X in

i: k(X) < L is the solution of the following universal problem. For any dominant normal X-scheme
f:Y — X such that R(f) : k(X) — R(Y) factors through:

R(Y)
R(f):
R(W)JA ()

there exists a unique X-morphism f; : ¥ — X such that R(f;) = R(f);.

The normalization 7; : X* — X always exists and is unique (up to a unique X-isomorphism). Fur-
thermore, for any affine open subscheme U C X, 7, L) c X' is again an open affine subscheme and
the corresponding ring extension 771#(U) : Ox(U) < O, (m;1(U)) is the integral closure of Ox (U) in
L. In particular, X' is normal. When X is normal, ; : X% — X is a finite morphism. From now on,
we assume that X is also normal.

Given a finite separable k(X)-algebra i : k(X) — A = [['_; L;, let i; : k(X) — L; denote the
composition of ¢ : k(X) — A with the jth projection p; : A — L;, j = 1,...,r. Also, define the
normalization of X in i : k(X) — A to be the coproduct [[;_, m; : [/, X% — X and denote it,
again, by m; : X' — X. Then a finite separable k(X)-algebra i : k(X) < A = [Tj= Lj is etale over X
if 7 : X' — X is unramified (or, equivalently, etale). We denote by F EAy(x),x the category of finite
separable k(X)-algebras etale over X.

Theorem 2.10 Let X be a connected normal scheme. The function ring functor induces an equiv-
alence of categories R : RSt ~ FEAyx) x a pseudo-inverse of which is given by the normalization
functor m_: FEAyx) x = Rx, i1 k(X) = A7 X X,

Proof. See [SGA1, Chap. I, §10]. O
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Corollary 2.11 Let X be a connected, locally noetherian, normal scheme with generic point n :
E(X) — X. Let k(X) — Q be an algebraically closed field extension defining geometric points x, :
spec(€2) — spec(k(X)) and x : spec(2) — X. Let k(X) — My x) x denote the mazimal algebraic
field extension of k(X)) in Q which is etale over X.Then one has the canonical short exact sequence of
profinite groups:

1 4>FMI@(X) X 4>Fk

w1 (spec(k(X)), xy) —=m (X, z) —=1.
In particular, this defines a canonical profinite group isomorphism:
Gal(My(x) x |k(X))=m (X, z).

Proof. From theorem 2.10, the base change functor H(n) : R$ Rspec(k(X)) is nothing but the
forgetful functor For : FEAyx)x — FSAyx). By the deﬁmtlon of the category FEAx) x,
the natural functor morphism HOHlFEAMX),X(—’Mk(X),X) — HomFEAk(X%X(—,Q) induced by the
inclusion My,(x) x < €2 is a functor isomorphism. Hence, HomFEAk(X%X(—, Mk(X),X) tFPEApx)x —

FSets is also a fibre functor for FEAyx) x. Also, from §2.2.1, we may assume that (2 = k(X). Then:

Uy : m1(Spec(k(X)), zy) — m(X, x)

corresponds to the natural functor morphism:

AUtht(HomFSAk(X) (—, k(X))) — Autht(HomFEAk(X)yX (—, Mk(X),X))

which, by Yoneda lemma, identifies with:

AutFSAk(X)(k( )) - AutFEAk (x), X(Mk( X),X )

i.e. the restriction epimorphism Aut(k(X)|k(X)) — Gal(}M, x),x|k(X)). Conclude again using the
canonical restriction isomorphism Aut(k(X)|k(X))= Crx)- D

Example 2.12 Let X be a curve, smooth and geometrically connected over a field k and let X — X be the smooth
compactification of X. Write X \ X = {P1,..., P.}. Then, with the notation of corollary 2.11, k(X) < Myx),x is just
the maximal algebraic extension of k(X) in Q unramified outside the places Pi, ..., Py.

2.2.3 Geometrically connected varieties
Let k be a perfect field and let X be a scheme geometrically connected and of finite type over k. Fix
a geometric point T : spec(§2) — Xz with image x : spec(2) — X and s : spec(£2) — spec(k).

Proposition 2.13 Then the structural morphism X — k induces a canonical short exact sequence of
profinite groups:
1 — m(X%, @) — m(X,2) — m(spec(k),s) — 1. (2)

Remark 2.14 The statement of proposition 2.13 remains true without the assumtion that k is perfect. But, for this,
one needs an additional descent argument (see Step 1, §3.2.2).
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Example 2.15 Assume furthermore that X is normal. Then the assumption that X is geometrically connected over
k is equivalent to the assumption that kN k(X) = k and, with the notation of §2.2.2, the short exact sequence (2) is just
the one obtains from usual Galois theory:

1 — Gal(M BX), X ) — Gal(My(x),x) = T — 1.

The proof in the general case is slightly more difficult.

Proof. We use the criteria of proposition 1.18.

Exactness on the right: It follows from the fact that X is geometrically connected over k, which implies
that for any finite field extension k — [, X is connected.

Exactness on the left: This amounts to showing that for any f:Y — Xt € R%ﬁ there exists f: Y —
X € R and a morphism from f Xk Y; — Xg to Yy — Xz in R%z' So, let I be a field of definition
for f:Y — X7, that we may assume to be Galois and finite over k (here, we use the assumption that
X is of finite type over k). Then the action of I'y over f:Y — Xj factors through I' := Gal(l|k) and
it follows from Weil descent that the cover [[,op 7f : [I,er 7Y — X7 is defined over k. Indeed, for
any 7 € I, let ¢y : "(I[,er 7Y)= [ er 7Y defined by ¢-(7(°Y) = ™Y and ¢, : "(7Y)> 7Y is
the canonical [-isomorphism fitting in:

TU?

I

Since ¢pg 0 “Pr = ¢gr, 0, T €T, the ¢ : "([L,er 7Y)> Hyer oY, 7 €T are a descent datum for
[l,er Y. Since Y is of finite type over k, one can cover it by finitely many open affine subschemes
U; = spec(4;), 1 <i < r and, up to enlarging [, one may assume that each of the U; is defined over .

But then H v H U U H -

el cel’  1<i<lr 1<i<roel

where [[, . “U; = spec([[,cr “A:) is an open affine subscheme I'-stable. So the descent datum is
effective, that is there exist a a k-scheme Y and a k-isomorphism ¢ : Y=Yz (actually defined over [)
such that ¢, = "¢ o ¢!, 7 € I. Then, since via this identification H,er of Y; — X3 commutes
with the I-action, it follows from Weil descent for morphisms that [ . 7f : Y — X5 is defined
over k that is there exist a k-morphism f : Y — X such that f x; k : Y — X3 is isomorphic to
Yy — Xz in R%E. Eventually, since X7 — X is faithfully flat, it follows from faithfully flat descent
that f: Y — X € R¢.

Exactness in the middle:

- For any connected ¢ : spec(l) — spec(k) € Rgi)ec , (@ X3 X) xx X7 is just the identity X7—=X7.

- For any connected f:Y — X € RS such that f x; k : Yz — X admits a section, say s : X3 < Yz,
let [ be a field of definition of s : Xz < Yz, that we may assume to be finite over k. Then there exists
a section s;: X; — Y of f;:Y, — Xl (such that s; x; k : (X )7 — (Y7)z identifies with s : Xi- — Y7)
hence a morphism from X; — X to f: Y — X (obtained by composing s with the cover V; — Y. O
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Remark 2.16 Any k rational point on X produces a (conjugacy classe of) splitting(s) of (2). The converse question,
that is whether any splitting of (2) comes from a k-rational point on X is what is at stake in the section conjecture.
Also, determining group-theoretically which sections of (2) come from k rational points on X is often a crucial step in
anabelian proofs. Note that the section conjecture is false in general (for instance, if k = IF,, is finite then, in general, (2)
admits infinitely many non conjugate splittings whereas X (k) is finite).

2.2.4 Abelian varieties

For an introduction to the general theory of abelian varieties, we refer to [Mum70]. In the following,
k always denotes an algebraically closed field.

Theorem 2.17 (Serre-Lang) Let k be an algebraically closed field and A an abelian variety over k.
For each n > 1 let Aln] denote the finite subgroup underlying the kernel of the multiplication-by-n
morphism [n4] : A — A and, for each prime l, set

T)(A) :=lim A[I"]?.
Then, there is a canonical isomorphism

m1(A4,04)= HTl(A)
!

Proof (sketch of).

1. Claim: Let f: X — A € RY. Then X carries a structure of abelian variety such that f : X — A
becomes a separable isogeny.

To prove this, we will use the following criterion [Mum?70, App. to §4].

Lemma 2.18 Let X be an irreducible scheme proper and of finite type over k, e € X and
m: X xp X — X a morphism of k-schemes such that m(e,x) = m(z,e), x € X. Then X is an
abelian variety over k with group law m and identity e.

Let Iy, — A X3 A X, A denote the graph of the group law m : A x; A — A on A and consider
the following cartesian square:
Fm(—> A X k A X k A

T O TfoXf

Ve—— X xp X %1 X

Then, by construction, one has the following commutative square:

I ——In

plZi plQl

XXk-XWAXkA

and, on the one hand, since f : X — Aisetalesoare fxX f: X X, X X X — AxAand " — T,
and, on the other hand, by definition of the graph, pis : I';,>A X A is a k-isomorphism hence

Recall that if [ is prime to the characteristic of k then Tj(A) ~ Z}¢ whereas if | = p is the characteristic of & then
T,(A) ~ Z;,, where g and r(< g) denotes the dimension and p-rank of A respectively.

D
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is etale. So, it follows from the commutativity of the above diagram that pjo : IV — X x5 X is
etale.

Fix now zy € X such that f(zg) = 04 and let T' be the connected component of I containing
(zo,x0,x0). Write p := pia|r : I' = X X X. The assertion of step 1 will then follow from lemma
2.18 and the following claim.

-1
Claim: p : I'SX X X is an isomorphism and, defining mx : X X X .1 B X, one has
mx(x,z9) = x = mx(zo,x), v € X.

It remains to prove the claim. First, as p is an etale cover it is enough to prove that there
exists (z1,22) € X x3 X such that [p~((z1,22))] = 1. So let o1, 02 : X — I defined by
o1(x) = (xg, z,x) and oo(x) = (z, 0, z) (note that , for i = 1, 2, 0;(X) is connected, o;(X) C T”
and (2o, zo, 7o) = 0i(w0) € 0y(X) hence 0;(X) C I'). Since plg,(x) : 02(X)=X X3, {zo}, it is
enough to prove that p~1(X xj, {x9}) = 02(X) or, equivalently, that ¢~ !(z¢) = o2(X), where
q=po|r : T — X. But as 03(X) is an irreducible component of ¢~*(zg), it is actually enough
to prove that ¢~ '(xg) is irreducible. As already noticed, p : I' — X xj X is etale and as
Fxf:XxpgX — Axg Ais etale as well so is I' — A X A hence I is regular and, being
connected, is irreducible. Furthermore ¢ = ps op : I' — X is smooth as the composite of the
etale morphism p with the smooth morphism py and g o 01 = Idx so the claim follows from the
following lemma [Mum?70, Lemma p. 168].

Lemma 2.19 Let S, T be irreducible schemes of finite over k and f : S — T a smooth proper
k-morphism. If there exists a section s : T — S of f then all the fibres of f are irreducible.

The last part of the claim follows then from mx (x,zq) = p3(p~'(z,20)) = p3(o2(z)) = = and
my (wo,) = p3(p~ (w0, 7)) = p3(o1(x)) = x (for the second equality, note that the parts of oy
and o9 can be interverted).

2. Now let f: X — A be an isogeny with kernel of exponent say n > 1. Then ker(f) C ker([nx])
hence one has a canonical commutative diagram:

X/ker(f)—= A
g
/ T !
X=—X.
[nx]
Also, it follows from the surjectivity of f that fog = [na4].

Combining the above remark and step 1, one gets that ([I"] : A — A),>0 is cofinal among the
finite etale covers of A with degree a power of [ that is

m1(4,04)" = lim A"] = Ty(A). O

Remark 2.20 As already noticed, if k is any field and A is an abelian variety over k, there is always a canonical
split short exact sequence of profinite groups:

04
1——m(A Xy k,04) —>m1(4,04) —T —1,

which identifies canonically 71 (A,04) with the I'y-module [T, T;(A) x T'g.
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Now, assume that & = C and that A = C9/A, where A C CY is a lattice. Then, on the one
hand, the universal covering of A is just the quotient map C9 — A and has group WiOp (A(C),04) ~ A
whereas, on the other hand, for any prime [:

Ti(A) = limA["]
- hﬁllinA/A
= limA/I"A
_ A,
whence .
m1(A,04) = [[T(A) ~ [[ 7(A(C),04)® ~ 7P (A(C),04).
! !

This is a special case of the more general Riemann existence theorem.

2.2.5 Riemann Existence Theorem

Complex analytic spaces

- "Affine” complex analytic spaces. Given analytic functions fi,..., f, : U — C defined on the poly-
disc U C C" of all z = (21,...,2,) € C" such that |z < 1,i=1,...,n, let U(f1,..., f.) denote the
locally ringed space in C-algebra with:
- underlying topological space the closed subset N;_; f;l(O) C U endowed with the topology inherited
from the transcendent topology on U,
- structural sheaf Oy / < fi,..., fr >, where Oy is the sheaf of germs of holomorphic functions on U.

- Complex analytic spaces. The category Anc of complex analytic spaces is the full subcategory of the
category LRc_ 414 of locally ringed spaces in C-algebra whose objects (X, Ox) are locally isomorphic
to affine complex analytic spaces.

Complex analytic spaces associated with a scheme locally of finite type over C Let X be
a scheme locally of finite type over C

Claim: The functor HomLRcfAlg(—jX) : An?cp — Sets is representable that is there exists a complex
analytic space X" and a morphism ¢x : X" — X in LRc_ 414 inducing a functor isomorphism

¢xo : Homyp.(—, Xan);)HomLR(CfAlg (=, X).

¢ox : X — X is unique up to a unique X-isomorphism and is called the complex analytic
space associated with X. It can be explicitly described as follows. Let {(U; = spec(A4;))icr, (¢i; :
Ui j=Uji)ijer} be a glueing data for X by affine schemes. For each i € I, since A; is a C-algebra of
finite type, it can be written as A; = C[X]|/ < fi1,..., fir, >. Define X" to be the complex analytic
space given by the glueing data {(U(fi1,..., fir;))ier, (¢ : Ui j—Uji)ijer}. For more details, see for
instance [S56].

Eventually, given a C-morphism f : X — Y of schemes locally of finite type over C, it follows from
the universal property of ¢y : Y% — Y that there exists a unique morphism f%* : X% — Y% in
Ang such that ¢y o f4" = fo ¢x.
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Statement Let SchfT/C denote the category of schemes locally of finite type over C. One thus
gets a functor (—)® : Sch*T/C — Anc. Riemann existence theorem can now be formulated as
follows.

Theorem 2.21 For any scheme X locally of finite type over C, the functor (—)*" : Sch**T /C — Anc
induces an equivalence of categories
(_)an . R% ~ Ret

In particular, as Ritan is equivalent to the category F R;fop of finite topological covers of the under-

lying transcendent topological space X°P of X4, for any x € X one has a canonical profinite groups
isomorphism:

o —

TP (Xtor x) ~ 7y (X, ).

Proof. See [SGAL1, XII, Th. 5.1]. O

Example 2.22 Let X be a smooth connected C-curve of type (g,7) (that is the projective compactification X of X
has genus g and | X \ X| = r). Then, for any # € X one has a canonical profinite group isomorphism fg,,« ~ m (X, x).

In particular, if g = 0 then 71 (X, x) is the pro-free group on r — 1 generators, so, any finite group G generated by
< r—1 elements is a quotient of w1 (P& \ {t1,...,t.}, x) or, equivalently, appears as the Galois group of a Galois extension
C(T) — K unramified everywhere except over t1,...,t,. This solves the inverse Galois problem over C(T').

3 Etale fundamental group

3.1 Descent
3.1.1 The formalism of descent

We recall briefly the formalism of descente. Let S be a scheme and Cg a subcategory of the category
of S-schemes closed under fiber product. A fibered category over Cg is a pseudofunctor X : Cg — Cat
that is the data of:

- for any U € Cg, a category Xy (sometimes called the fibre of X over U — 95);

- for any morphism ¢ : V' — U in Cg, a base change functor ¢* : Xy — Xy

- for any morphisms W 5 V % Uin Cs, a functor isomorphism o, ¢ : x*¢*=(¢ o x)* satisfying the
usual cocycle relations that is, for any morphisms X S WAV LA U in Cg, the following diagrams
are commutative:

Wt L0 x (g0 30
aw,x(¢*)l lo‘w,tbox
(x o )¢ 5= (B0 x 0 V)"

Given a morphism ¢ : U' — U in Cg, write U" :=U' xy U, U" :=U' xy U xg U’, p; : U" — U’,
i=1,2,p;:U"—-U"1<i<j<3,u:U"—=U' i=1, 2, 3 for the canonical projections.

4To see this, observe that if f:Y — X*P ¢ F Rﬁ?fop is a topological covers then the local trivializations endows Y
with a unique structure of analytic space (induced from X“") and such that, with this structure, f : Y — X*°? becomes
an analytic cover. Conversely, if f:Y — X" € FRYun then, for any y € Y one can find open affine neighborhoods
V = spec(B) of y and U = spec(A) of f(y) such that f(V) C U, B=A[X]/ < f > and (£L), € Oy, [L00, Prop. 4.11]

hence the local inversion theorem gives local trivializations.
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A morphism ¢ : U’ — U in Cg is said to be a morphism of descent for X if for any x,y € Xy and
any morphism [’ : ¢*z — ¢*y in Xy such that the following diagram commute:
apmy

%j(y)
’ i f’

R ()

%m }/apg,cb(y)

p3o* () 2l pty

pio (@) e pry

there exists a unique morphism f : z — y in Xy such that ¢*f = f'.

A morphism ¢ : U' — U in Cg is said to be a morphism of effective descent for X if ¢ : U’ — U is
a morphism of descent for X and if for any 2’ € Xy and any isomorphism w : pi(z')=p5(2’) in Xy
such that the following diagram commute

*

Py 3
Pl 3pi(2") —= pi 3p5(’)

Apy :’b)\

PI 3u
* / ’ * l
4
apy opy ()] - Apg 3.p2(
PI 229 7 PQ 302 5(2')
. * ,'
P{,QUJ/ 77,,1)1’2u ,’pg 3U p§’3u
* k(o]
2 229 P33P (')
\ apgw(//)
Oy 5.p2 (2 9 £
* N 0k /
uz(2') =———=u3(2')

there is a (necessarily unique since ¢ : U’ — U is a morphism of descent for X) z € Xy and an
isomorphism f’: ¢*(x)=a’ in Xy such that the following diagram commute

pif!
*¢* 1*>pa1(($/)

\

u
e pgfl
() 02 ()

The pair {2/, u : py(a’)>p5(2’)} is called a descent datum for X relatively to ¢ : U' — U. De-
noting by D(¢) the category of descent data for X relatively to ¢ : U’ — U, saying that ¢ : U' — U
is a morphism of descent for X is equivalent to saying that the canonical functor Xy — D(¢) is fully
faithfull and saying that ¢ : U’ — U is a morphism of effective descent for X is equivalent to saying
that the canonical functor Xy — ©(¢) is an equivalence of category.
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Example 3.1 The basic example is that any faithfully flat and quasi-compact morphism ¢ : U’ — U is a morphism of
effective descent for the fibered category of quasi-coherent modules. See for instance [FGAO5, Part.1], for a comprehensive
introduction to descent technics.

3.1.2 Selected results

The fibered categories we will now focus our attention on are the categories of finite etale covers. We
will only mention results that will be used later. For the proofs, we refer to [SGA1, Chap. VIII and
IX] .

Theorem 3.2 Let X be a locally noetherian scheme and i : X" — X be the underlying reduced
closed subscheme. Then the functor i* : RS ~ R%md s an equivalence of categories. In particular, if
X is connected, for any geometric point x € X" one has a canonical profinite group isomorphism

w1 (i) s (X7, 2) Sy (X, 2).

Theorem 3.3 Let S be a locally noetherian scheme and let f : S — S be a morphism which is either:
- finite and surjective or

- faithfully flat and quasi-compact .

Then f : 8" — S is a morphism of effective descent for the fibered category of etale, separated schemes

of finite type.

Corollary 3.4 Let S be a locally noetherian scheme and let f : 8" — S be a morphism which is either:
- finite, radiciel and surjective or

- faithfully flat, quasi-compact and radiciel.

Then f:S" — S induces an equivalence of categories f* : RY ~ R%,.

Theorem 3.5 Let S be a locally noetherian scheme and let f : S" — S be a proper and surjective
morphism. Then f: S’ — S is a morphism of effective descent for the fibered category of etale covers.

3.1.3 Comparison of fundamental groups for morphism of effective descent

Assume that f : S’ — S is a morphism of effective descent for the fibered category of etale covers.
Our aim is to interpret this in terms of fundamental groups.

Consider the usual notation S”, 5",

pi S — S =12,
pij: S —=8" 1<i<j<3,
u; : 8" -8, =1,2,3.

and assume that S, S’, S”, S are disjoint union of connected schemes, then, with E’ := my(S’),
E" :=7mo(S"), B" := m(S"), also set:

qi = 7'['0(])7;) : EH - Ela 1= 1727
qij; = Wo(pi’j) ) LN E”, 1 < 1< j < 3,
v; =mo(u;) : B — E', i =1,2,3.

Write C := RY, C' :== R%, C" := R%,, C"" := RZ%,. We assume that S is connected.
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Fix s € E' and for each s’ € F', fix an element s’ € E” such that

/

q1(s') = s(, and ¢2(s') = &

Also, for any s’ € E' (resp. s” € E", s"" € E") fix a geometric point s’ € s’ (resp. s” € §”, " € §”)
and write 7y = Autpe(FL) (resp. mgr = AutFCt(st,), Tgm 1= Autht(F ")) for the corresponding
fundamental group.

Smce for any s” € E” p;(s") and ¢;(s") lie in the same connected component of S’, one gets etale

paths O‘i : F& opf = F];i (§,,)L> ai(s")” hence profinite group morphisms:

1

@ e — m1(qi(s"), pi(s”)) ~ Tgs(sys @ = 1,2

Similarly, one gets etale paths a  F ’f,, op;; =F ; (s = F () and profinite group morphisms:

qij DT — T (qi’j(SI”),pi(§”/)> ~ Tqu',j(S”/)’ 1 < 1< ] < 3.
Eventually, from the etale paths

Ui i * *
g O DY 9 © P Fy, (srry—Fgn 0 py 30 p7;

" " " .
FS,,, o p1,2 o ps— ’UQ(S”/)(_FSN’ © P33 © py;

m % &~ ~ . "
Fgi o P13°op2— vy (s F g © D33 © D2

one gets af/" € Ty (s)s © = 1,2,3 such that

’”) m " " "
s s q1 3(5 ) s,

0 °f012 =1 t(ai )oq °41,3;
q2(s") g s a2,3(s") g
) °4io = int(a3 ) o q ©G53;
q1,3(5/”) R Nz q2, 3(5 ) ///
4o 0492 = int(a3 ) o gy °q33;

Since f : S’ — S is a morphism of effective descent, the above data allows us to recover C from C’, C”,
C"" up to an equivalence of category hence to reconstruct 7 (S, p(s())) from the 7y, g, Tr11.

More precisely, the category C' with descent data for f : S’ — S is equivalent to the category
C({mg }scpr) together with a collection of functor automorphisms gy : Id=1d, s” € E" satistying the
following relations:

(1) gs//qiq” (7H> _ qs” (’Y”)gs", e E”;
(2) 95 =g, 8 € EY;

/// " "m

(3) CL3 gq1 3(s ///)ai gq273(8///)a§ gq172(5///), s" e EW,

So, set
= H Uy H ng”/ < (1)7(2)v(3) >,
s'eS’  s'eR!
where ] stands for the free product in the category of profinite groups and let N be the class
of all normal subgroups N < ® such that [® : N] and |7y : z;l(N)] are finite (here i5 : 75 —
Hyeg mo Hgrepr Zgsr — @ denotes the canonical morphism). Then writing
= lim ®/N

NeN
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one gets that the category C’ with descent data for f : S’ — S is also equivalent to the category C().
Whence:

Theorem 3.6 With the above assumptions and notation, one has a canonical profinite group isomor-
phism
71 (S, p(sp)) =

Corollary 3.7 With the above assumptions and notation, if E' and E" are finite and if the wy,
s' € E" are topologically of finite type then so is w1 (S, p(s())-

Corollary 3.8 Let S be a connected scheme and let f : S’ — S be a universally submersive and
geometrically connected morphism. Then S’ is connected and for any geometric point s’ € S’ the
canonical profinite group morphism m (f*) : w1 (S, s") = w1 (S, f(s')) is an epimorphism.

If, furthermore, f : S’ — S is a morphism of effective descent for the fibered category of etale
covers, let " := (s',s') € S" and m(p}) : m(S”,s") — m (S, '), i =1, 2 the two canonical profinite
group morphisms induced by the canonical projections p; : S — S’, i =1,2. Then

ker(m1(f*)) = Nory, s,y ({m1(p1) (V") 71 (03) (V") }yrem(s7,6m))-

3.2 Specialization
3.2.1 Statements

Let S be a locally noetherian scheme and f : X — S a proper, geometrically connected morphism
with f,Ox = Og. Fix sg, s1 € S with sp € {s1} and consider the following notation:

Qo

[N 7k
o [e]al o]

k(s1) — k(s1) k(so) k(s0),

where g, 21 are algebraically closed fields. Also let 59, 51 denote the images of Ty, 1 in S respec-
tively.

8|

S1 S0

The theory of specialization of fundamental groups consists, essentially, in comparing 7 (X1, 7Z1)
and 71(X,Tp). The main result is the following.

Theorem 3.9 (Semi-continuity of fundamental groups) There exists a morphism of profinite groups
sp: ﬁl(yl,fl) — Wl(YO,fo),

canonically defined up to inner automorphisms of m1(Xo,To). If, furthermore, f : X — S is separable,
then sp : m1(X1,T1) = m1(X0,To) is an epimorphism.

The morphism sp : 71 (X1,%1) — m1(Xo,To) is called the specialization morphism from s to sq.
The proof of theorem 3.9 relies on the two following theorems. Let assume for a while that

S = Spec(A) with A a local complete noetherian ring and that sp € S is the closed point of S, s; € S
is any point of S.
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Theorem 3.10 (First homotopy sequence) The canonical sequence of profinite groups:
1= m(Xo,T0) > m (X, 2(0))) 2 m(8,50) = 1 (3)

s exact and the canonical morphism Fk(SO)%m(S, S0) is an isomorphism.
If, furthermore, o € X (k(so)) (or is rational over a radiciel extension of k(sg)) then the above
short exact sequence splits.

Theorem 3.11 (Second homotopy sequence) Consider the following canonical sequence of profinite
groups:
m(X1,71) 5 (X, 20)) 2 m(S,51). (4)

Then py : m (X, m(1)) — m1(S,31) is an epimorphism and Im(iy) C Ker(p1). If, furthermore, f: X —
S is separable then Im(i;) = Ker(py).

Corollary 3.12 (Product) Let k be an algebraically closed field, X — k a connected, proper k-scheme
and Y — k a connected, locally noetherian k-scheme. Let x : Q@ — X andy : Q — Y be geometric
points. Then the canonical profinite group morphism

771(X Xk }/a ('Ia y));)’n-l(Xv :E) X 7T1(Y7 y)
s an tsomorphism.

In particular, if Y = y : spec(Q2) — spec(k) then (X Xy, Q,2)=m(X,z) is an isomorphism. In
other words, the etale fundamental group of a connected, proper k-scheme is invariant under base
extension by algebraically closed fields.

This is no longer true for non-proper schemes. Indeed, let k be an algebraically closed field of
characteristic p > 0. From the long cohomology exact sequence associated with Artin-Schreier short
exact sequence:

0—>]Fp—>(Ga7k£>(Ga,k—>O

one gets:
K[T)/PKIT] = HO(AL, O,y )/PHO(AL 0,1) SHL (AL Fy) = Hompog, (11 (A}, 0), Fy).

An additive section of the canonical epimorphism k[T — k[T|/Pk[T] is given by the representatives:

Z a,T", a, €k,

n>0,(n,p)=1

which shows that 71 (A}, 0) is not of finite type (compare with theorem 3.22) and depends on the base
field k.

Construction of the specialization morphism-1. Let assume, again, that S = Spec(A4) with
A a local complete noetherian ring and that sy € S is the closed point of S, sy € S is any point of
S. Then one has the following canonical diagram of profinite groups, which commutes up to inner
automorphisms:
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(3) 14>7T1(Y0,To)Lﬂ-l(‘)gx(O))p;O)ﬂ-l(Sng);)l

A
3! sp ax ags

(4) 7T1(Y1,f1)L>7T1(X7$(1))p41>7ﬁ(5,§1)4>17

where the vertical arrows ax : 71 (X, 2(1)) =71 (X, 7(0)) and as : 71(S,5(1))=m1(5, 8(0)) are the canon-
ical (up to inner automorphisms) isomorphisms of theorem 1.3.

Now, since pgoax oi1” ="agopj o ) 0 (here ” =” means equal up to inner automorphisms
and equality () comes from theorem 3.11), one has Im(ax oi1) C Ker(pg) = Im(ip) (by theorem 3.10)
and, hence, there exists a profinite group morphism:

sp: m(X1,71) — m1(Xo, To),
unique up to inner automorphisms and such that ax o p;” = "ig o sp.

If, furthermore, Im (i) = Ker(p1), a straightforward diagram chasing shows that sp : 7 (X1,Z1) —
71(X0,To) is an epimorphism.

Construction of the specialization morphism-2. We come back to the case where S is any
locally noetherian sheme and sp, s1 € S with sp € {s1}. One then has the following canonical
commutative diagram:

k(snﬂk(?) Sl T T ko) < Ko
k(51) —= k(31) ——= spec(Og,5,) = k(30) k(30).

31 S0

From the preceding §, one has a canonical specialization morphism:

sp : 7['1(X1 Xk(Tl) k(§1),§1) - 771(?0750)

and , from corollary 3.12, the canonical morphism (X ST k(31) 21)>m(X1,T1) is an isomor-
phism.

The two next sections will be devoted to (sketch of) proofs of theorem 3.10, theorem 3.11 and
corollary 3.12.

3.2.2 First homotopy sequence

The proof resorts to deep results from [EGA3]; we will only sketch it but give references for the missing
details.

Step 1: Assuming that A is a local artinian ring, the conclusions of theorem 3.10 hold.
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Recall that, in an Artin ring, any prime ideal is maximal hence the nilradical and the Jacobson
radical coincide. In particular, if A is local, the nilpotent elements of A are precisely those of its
maximal ideal. From theorem 3.2, one may thus assume that A = k(sg) and, then, the conclusion
m1(5,50) ~ Di(sy) is straightforward. Let k(so)" denote the inseparable closure of k(sq) in k(so) and
X§ := X xgk(sp)". Then the cartesian diagram:

X X S (5)
O T O T |
Xo— X3 — Spec(k(s0)")

induces a commutative diagram of profinite group morphisms:

m1(Xo,To) — (X, 2(0)) Wl(?,SO) (6)
T (Yo, fo) —T1 (X67 ‘/L‘Z(())) — Tl (SpeC(k(S())i), g6)

Now, since each of the vertical arrows in (5) is faithfully flat, quasi-compact and radiciel, it follows
from corollary 3.4 that the vertical arrows in (6) are profinite group isomorphisms. Hence it is enough
to prove that the bottom line of (6) is exact that is one may assume that k(sg) is perfect.

But, then, k(sp) can be written as the inductive limit of its finite Galois subextensions {k(sg) —
ki}icr hence, writing X; := X Xg k; and z; for the image of Ty in Xj, the base change functor
hgl R%i ~ R% is an equivalence of categories hence induces a profinite group isomorphism

Wl(YO,fo)gﬁm 771(Xi7 [IZZ)

But, for each i € I, X; —» X € R% is Galois with group Gal(k;|k(sp)) so, from proposition 1.19 one
has a short exact sequence of profinite groups:

1 — m(Xi, 2:) — m(X, 2(9)) — Gal(ki|k(s0)) — 1.

Using that the projective limit functor is exact in the category of profinite groups, we thus get the
expected short exact sequence of profinite groups:

1 — limmy (Xy, 25) — 7m1(X, 20)) = Ti(s) — 1.

Remark 3.13 The above (with A = k a field) shows that the statement of proposition 2.13 remains true without
the assumption that k is perfect.

Step 2: The closed immersion ix, : Xo — X induces an equivalence of categories RS = R%O. In
particular, one has a canonical profinite groups isomorphism w1 (Xo, zo)=m1(X, z())-

One has to prove that:
(i) Forany p: Y — X, p/: Y/ — X € R¢ the canonical map

Hompg (p,p') — Hompg (p > x Xo,p' xx Xo)
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is an isomorphism and
(ii) For any pg : Yo — Xo € R%O there exists p: Y — X € R$ such that p x x Xo—=po in R%O.

The proof of (i) and (ii) is based on Grothendieck’s Comparison and Existence theorems in
algebraico-formal geometry. We first state simplified versions of these theorems.

Let S be a noetherian scheme and p : X — S be a proper morphism. Let Z C Og be a coherent
sheaf of ideals. Then the descending chains --- € Z""! € I" C --- C T corresponds to a chain of
closed subschemes Sy — S; — -+ — S5, — --- — §. We will use the notation in the diagram below:

S )Sn o. .. )Sl )SO
T » O Tpn . Tpl . Tpo
X )Xn DI 7X1 )XO~

For any coherent Ox-module F, set F, := p;F = F ®o, Ox,, n > 0. Then F, is a coherent Ox, -
module and the canonical Ox-module morphim F — F, induces Og-module morphisms Rip,F —
RIp.F, ¢ > 0 hence Og,-module morphisms:

(qu*j:) RKog OXn - qu*j:m qg>0
and, taking projective limit, canonical morphisms:

hm(qu*f) Rog OXn — lim qu*fna q=>0.

When S = spec(A) is affine and I C A is the ideal corresponding to Z C Og, the above isomorphism
become: R
HY(X,F)®4 AS1limHY(X,,, F,), ¢ >0,

where A denotes the completion of A with respect to the I-adic topology.

Theorem 3.14 (Comparison theorem [EGA3, (4.1.5)]) The canonical morphisms:
lim(R%p.F) @0y Ox,— lImR¥p,F,, ¢ >0
are isomorphisms.

Theorem 3.15 (Existence theorem [EGA3, (5.1.4)]) Assume, furthermore that S = spec(A) is affine
and that A is complete with respect to the I-adic topology. Let F,, n > 0 be coherent Ox, -modules
such that Fpi1 ®0Xn+1 Ox,—=Fn, n > 0. Then there exists a coherent Ox-module F such that
F ®oy Ox,—Fn, n>0.

For any p:Y — X € R¢, recall that A(p) := f.Oy is a locally free Ox-algebra of finite rank and
that the functor
A: Rg? — FLFAp,
piY =X — Ap)

is fully faithful.
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-Proof of (i): Let M denote the maximal ideal of A and, for any n > 0, write A,, :== A/M" "L, Then
one has canonical functorial isomorphisms:

Hompge (p,p') = HY(X, Homprpa,, (A(p), Ap)))
- {in HO(XnamFLFAoX( (p/)a -A(p)) ®ox OXn)’

where the first isomorphism comes from the fact that A is fully faithful and the second isomorphism is
just the comparison theorem applied to ¢ = 0, 7 = Hompypa, (A(p), A(p)) and I = M, observing

that, since A is complete with respect to the M-adic topology, A = A.

Furthermore, as A(p), A(p’) are locally free Ox-module, one has canonical isomorphisms:

@OX—Mod(A(P/)a A(p)) ®oy Ox, ;’Hoimoxn—Mod(A(P%)a A(pn))

But these preserve the structure of Ox-algebra morphisms hence one also gets, by restriction:

Homprpa,, (A(p"), A(p)) ®oy Ox, %@FLFAOM (A(p},), A(pn))-

Whence,
Hompe (p,p) = lim H(X,, Hompppa, (A®), A(p) oy Ox,)
= {iﬂ HO(XmHOJFLFAoXn (A(P;@)v A(pn)))
= lim Hompe; (pn,p},)
=

{iﬁl HomR%O (p07 p6)7

where the last isomorphism comes from the fact Hom RS (pn, pl,)—Hom RSt (po,py), n > 0 by theorem
3.2.

-Proof of (ii): By theorem 3.2, there exists p, : Y, — X,, € Rﬁgn, n > 0 such that p,=ppr1 X x,,, Xn,
or, equivalently, A(pn+1) ®ox, ., Ox, =A(pn), n > 0. So, by the Existence theorem, there exists
A€ FLFAopy such that A®o, Ox—A(pn), n > 0 hence, setting p : Y = spec (A) — X one has

p xx Xo—=po.
Claim: One has p:Y = spec (A) — X € RY.
See [Mur67, p. 159-161].

Step 3: From step 1 applied to A = k(sg), X = Xo, one gets the short exact sequence of profinite
groups: B
1 — m1(Xo,To) — m1(Xo, 7o) — Ti(sy) — 1.

Now, from step 2 one has the canonical profinite group isomorphisms (X, z)=m(xg, z9) and (for
X = 8) m1(8, 80)=T'(s,), Which yields the required short exact sequence.

Eventually, for the last assertion of theorem 3.10, just observe that, as above, one can assume that
A = k(sg) thus, if x € X (k(sp)), it produces a section z : S — X of f: X — S such that x 0 sg = =
thus a section I'y( ) — m1(X, z) of (3). O
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3.2.3 Second homotopy sequence

Technical preliminaries. Let k be a field. A k-scheme X is separable over k if, for any field ex-
tension K/k, X xj K is reduced. This is equivalent to requiring that X be reduced and that, for
any generic point 7 € X, the extension k(n)/k be separable (thus, if k is perfect, this is equivalent to
requiring that X be reduced). Let S be a scheme. A S-scheme X — S is separable over S if X — S
is flat over S and for any s € S, X Xxg k(s) is separable over k(s).

Note that:

- Any base change of a separable morphism is separable.

- If X — S is separable over S and X’ — X is etale over X then X’ — S is separable over S.

Theorem 3.16 (Stein factorization of a proper morphism) Let S be a locally noetherian scheme
and f : X — S be a morphism. Then the coherent Og-algebra f.Ox defines a S-scheme p : S' =
spec(f«Ox) — S and f : X — S fators canonically as:

p
P
S
Furthermore,

-If f: X — S is proper then p : 8" = spec(fOx) — S is finite and f' : X — S’ is proper and
geometrically connected;
-If f: X — S is proper and separable then p : S' = spec(f.Ox) — S € RZ.

s
f

— >

s

Corollary 3.17 Let S be a locally noetherian scheme and f : X — S be a proper morphism with

Stein factorization X LLg g Then,
-If f: X — S is proper then for any s € S, the connected components of X X ¢ g s k(s) are one-to-one

with the finite set of points above s and the connected components of X x5 s5k(s) are one-to-one with
the finite set of geometric points above s. In particular, if fOx = Og then X is connected.

-If f: X — S is proper and separable then f.Ox = Og if and only if f : X — S is geometrically
connected.

Proof. Exactness on the right.

Lemma 3.18 (Flat base change) Let f : X — S be a proper morphism and let F a coherent Ox-
module. Then for any cartesian diagram:

X/LX

/o )

S/ —8
with w: 8" — S flat over S, one has canonical isomorphisms:

en t TRIf(F)SRIUfL(T*F), ¢ >0
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In particular, for any 7 : S’ — S € RY with S’ connected, one has:

2
FL(Ox) = fi(m0x) 2wt f.0x 2 7005 = 0,

where (1) results from the flatness of 7 : S — S and lemma 3.18 whereas (2) results from the

assumption f,Ox = Og. Now, as ' : X’ — S’ is proper, it follows from corollary 3.17 that X’ is
connected.

Exactness in the middle.
- ker(p1) D im(é1): Let 7 : $" — S € RY and consider the following notation:

S, Sa) S’

o]

X4 X S

\(D)/
k(s1

Then

- ker(p1) C im(i1): Let 7 : X’ — X € R$ with X’ connected. Consider the following notation:

X, X S

o] =]

Yl ﬁyl —— k(sl)

Y

and assume that there exists a section o : X1 — Y’l of Ty : Y’l — X.
Since m : X’ — X is etale and f : X — S is proper and separable, g := fonm : X' — S is also

proper and separable. Consider its Stein factorization X’ % §' % S. From theorem 3.16, p: S’ — S
is etale over S. Consider now the following commutative diagram:

X . (7)

e
a
\

X<—X"\¢d

prx
15
S<TS/

Then o : X =X is an isomorphism. Indeed,
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(i) Since any base change of an etale morphism is again etale, pry : X” — X is etale. Also, by
hypothesis, 7. X’ — X is etale hence o : X — X" is etale.

(ii) Since X' is connected and ¢’ : X" — S’ is surjective, S’ is also connected. But then, it follows
from the surjectivity of p; : m1(X, z(1)) — 71(S,51) that X" is also connected.
1

(iii) We now base change (7) via 31 : k(s1) — S.

-/

S
and 0 : X1 — Y’l is etale hence maps connected components to connected components, o(X1) = Y’

Since p : §' — S is an etale cover, S’ = Hspec(k(sl)) hence X| = HYL Since X is connected
5

s

is a connected component of Y/l Again, since @ : Y/I — Y/ll is etale, @1 (Y”) is one of the connected
component Y ~ X of Yll Eventually, since pry ]y~ : Y”X1 is an isomorphism, one gets that
@]y : Y'Y is an isomorphism with inverse copry ||y : Y'Y, Now, |mo(X7)| = |mo(X7])| = |5,
and o : Y’l — X is surjective (since it is both closed and open and (Ylll is connected) and etale
so it induces a bijection (X)) =m(X;) and, in particular, for any y” € Y” la;t(y")] = 1. So
a: X' — X" has rank 1 at y".

Combining (i), (ii) and (iii), one gets that o : X’=>X" is an isomorphism. [J

As a result, o™ € Hom pet (prx, m) as required.

Remark 3.19 The assumption f.Ox = Og can be omitted and the conclusion of theorem ?? then becomes that the
following canonical exact sequence of profinite groups is exact:

71'1(?1,51) 2) 71'1(X, 1’(1)) Py 71'1(5,31) — Wo(yl) — 7T0(X) — Wo(S) — 1

Proof of corollary 3.12.
Lemma 3.20 X x, Y is connected.

Proof. Since the question is purely topological, one may assume that X = X7¢¢ thus that X — k is sep-
arable. Asps : X XY — Y is proper (since X — k is) and surjective and as Y is connected, it is enough
to prove that the fibres of pa : X X, Y — Y are connected. For this, it is enough to show that for any
field extension K/k, X xj K is connected. Since X is reduced, connected and k is algebraically closed,
one has H(X, Ox) = k (Stein factorization) hence, H(X x K, Oxx, r) = H(X,0x)®, K = K (flat
base change) but, as X xj K is reduced, this implies that X x K is connected (Stein factorization). [J

From theorem 3.2, the closed immersion X"¢% < X induces an equivalence of categories Rgfv ~
R%md so one can assume that X = X"¢ thus that X — k is separable.
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Since X — k is proper and separable, by base change, po : X XY — Y is also proper and separable
and, as already noticed, geometrically connected. It then follows from the cartesian diagram:

b

IDTDT,)

Xo 9)

a

and from theorem 3.11 that one has a canonical exact sequence of profinite groups:
m1(Xq,a) — m(Xq xq Y, (a,b) — m1(Y,b) — 1.

Then, the composite Xqg — Xq xqY Pl Xq is the identity hence 71(Xq,a) — m1(Xq xqY, (a,b))
admits a continuous group theoretic section and, in particular, is injective. So, actually, one gets a
split short exact sequence of profinite groups:

1 - m((Xq,a) = m(Xq xqY,(a,b)) — m(Y,b) — 1.
Thus the conclusion will follow from:
Lemma 3.21 The canonical morphism m (Xq,aq)—m1(X,a) is an isomorphism.

Proof. First, from lemma 3.20 for Y = spec(f2), Xq is connected. Similarly, for any 7 : X' — X € R
with X’ connected, X’ — k is proper (as the composite of a finite morphism with a proper morphism)
hence, X{, is connected as well, which shows that 1 (Xq,a) - 71 (X, a) is an epimorphism. So, it only
remains to prove that for any 7 : X{, — Xq € R%ﬂ, thereexistsm: X' — X € R% such that mx; Q57.
First, one can always find a k-subalgebra A C  of finite type over k and m4 : X, — X4 € R%A
such that m4 x4 Q57. Set Y :=spec(A) (hence X4 = X X Y); since Y — k is of finite type and k
is algebraically closed, one can always find by € Y such that k(by) = k. Also, since the fundamental
group does not depend on the fibre functor, one can assume that k(a) = k. Then, from the above,
one gets the canonical profinite group isomorphism:

7T1<X Xk Y, (a,bk))%m(X, CL) X 7T1(Y, bk)

Let U C m(X %1 Y, (a,by)) be the open subgroup corresponding to m4 : X’y — X X, Y € R%Xky.
Then consider two open normal subgroups Ux <1 7m1(X,a), Uy < m1(Y,bg) such that Ux x Uy C U.
Ux < m1(X,a), Uy < mi(Y,by) correspond to Galois covers 71 : X — X € R¢ and 7ty : Y — Y € Rt
respectively and m4 : Xy — X XY € R%Xky is a quotient of 71 X 7y : X Xk V> X X1 Y. Consider
now the following cartesian diagram:

XX;CY

XXkY%XXk}A/
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and let y € Y be the generic point of Y. Since k(y) C Q and Q is algebraically closed, one may assume
that for any point y € Y above y € Y, k(y) C 2 and that one has the cartesian diagram:

X X},

e

X Xk?%(X Xk ?) XQ,K(Q)Q':X X Q.

Thus, as X{, is connected, so is X'}, from which it follows in particular that X%,V - X /} is sur-
jective and that X'§ — X X Y corresponds to an open subgroup V C m(X xg Y) =m(X) x Uy
containing 7T1(X X I Y) = Ux x Uy. Hence X/j — X Xy Y is of the form X’ x, YV — X x, Y
for some 7 : X’ — X € R$. Now, on the one hand (X))y—=X" xj, k(9) and, on the other hand,
Xé;XA Xy Q%(Xg)y Xk(y) Q;(Xx)g Xk(@) Q~X' Xk Q. 0

3.2.4 Proper schemes over algebraically closed fields

Let k be an algebraically closed field and X — k a proper morphism with X connected. Then:

Theorem 3.22 For any geometric point x € X, m (X, x) is finitely generated.

Proof. The proof is by induction on dim(X) = d.

1. Reduction to the case where X is connected, normal and projective over k. The main argument
is Chow’s lemma [EGA2, Cor. 5.6.2],~which state that for any scheme X proper over a noethe-
rian scheme S there exists a scheme X .S projective over S and a surjective birational morphism

. . - —red -
X — X. Write X7*% — X for the underlying reduced closed subscheme and fra — X7ed for its

—red
normalization. The resulting morphism X  — X is then surjective and proper as the compos-
ite of three surjective and proper morphisms. (Indeed, the surjectivity is Stralgtforward As for

the properness: since both X and X are proper over k, so is the morphism X — X, X7 < X
—Ted
is a closed immersion, hence is proper and since X" is of finite type over k, X — Xred jg

finite hence proper). In our situation, all the schemes have finitely many connected components

—red
so, by theorem 3.5 and corollary 3.7 it only remains to prove that m1(X ) is topologically of
finite type.

So, now, assume that X is connected, normal and projective over k.

2. d=0, 1. If d = 0, there is nothing to prove. If d = 1, let () denote the prime field of k. Since
X — k is of finite type, there exists a subextension @ < kg of Q — k with transcdeg(ko|Q) <
400 and a kg-curve X such that

X —Xp
| o |

k — ko.
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-char(Q) = 0. As transcdeg(ko|@) < 400, one can find a field embedding kg — C hence, from
lemma 3.21, _
7T1(X) ~ 7I‘1(X0 Xko k‘) ~ 7T1(X0 Xko k‘o) ~ 7T1(X0 Xko (C)

So, one can assume that kK = C. It then follows from example 2.22 that one gets a profinite
group isomorphism:

where g denotes the genus of X.
-char(Q) = p > 0. Let W (k) be the ring of Witt vectors over k; it is a complete discrete valuation

ring with residue field k£ and fraction field K of characteristic 0. Then there exists a smooth
projective W (k)-scheme W (X) — W (k) such that

X —W(X)

| ° |

k—> W(k).

So, if s1 and sp denote the generic and closed points of spec(W (k)) respectively, one gets with
the notation of theorem 3.9, a profinite group epimorphism:

sp: m(W(X),) - m(W(X), = X).

But W(X), — K is also a K-curve of genus g, hence one has constructed a profinite group
epimorphism:

sp:Tgo— m(W(X), = X).
This proves the d = 1 case.

3. d=2> 2. Let X — P} be a closed immersion and let H — P} be an hyperplane such that X ¢ H
then the corresponding hyperplane section X - H (regarded as a scheme with the induced reduced
scheme structure) has dimension < d — 1 thus the conclusion will follow from:

Lemma 3.23 Let X be scheme proper over k, irreducible and normal and let f : X — P}
be a k-morphism such that dim(g(X)) > 2. Then, for any hyperplane H — P} the scheme
Y := X Xypn H is connected and for any finite connected etale cover X' — X, the induced finite
etale cover Y' := X' xxY — Y is again connected. In other words, the canonical profinite group
morphism m (Y, y) — m (X, z) is an epimorphism.

Proof of the lemma. Since X is normal, X’ is normal as well hence, being connected, it is
also irreducible. Thus, if H is the generic hyperplane of P} (defined over K = k(Tp,...,Ty))
then it follows from Bertini theorem that X/, Xprn. H is universally irreducible hence, universally
connected over K but then, it follows from Zariski connexion theorem that for any hyperplane
H — P} (defined over any extension k(H) of k) that X ,’ﬁ( H) Xl 'H is geometrically connected

over k(H). O

Corollary 3.24 For any finite group G there are only finitely many isomorphism classes of p: X' —
X € R¢ Galois such that Aut per (p)=G.
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3.3 Purity and applications
3.3.1 The purity theorem and aplications

Theorem 3.25 (Zariski-Nagata purity theorem) Let X, Y be integral schemes with X normal and Y
regular and locally noetherian. Let f : X — Y be a quasi-finite dominant morphism and let Z; C X
denote the closed subset of all v € X such that f : X — 'Y s not etale at x. Then, either Zy = X or
Zy is pure of codimension 1 (that is, for any generic point n € Z, dim(Ox ) = 1).

Corollary 3.26 Let X be a connected, reqular, locally noetherian scheme and let U C X be an open
subset such that X \ U has codimension > 2 in X. Then the open immersion U — X induces an
equivalence of categories RS ~ R¢t. In particular, for any geometric point x € U, the canonical
morphism

m (U, x)>m (X, x)

s an isomorphism.

Proof. As X is connected and regular (hence normal), X is irreducible. Since X is normal and X \U C
X is a closed subset of codimension > 2, the restriction functor Mod"?®(Ox) — Mod®(Oy) is
fully faithfull hence, one only has to prove that for any finite etale cover py : V' — U there exists a
(necessarilly unique by the above) finite etale cover p : Y — X such that

V—Y

PUi ] \L’P
U—X
One may assume that V' is connected hence, being normal (since U is), irreducible. So V is the

normalization of U in k(X) = k(U) — k(V). Let p: Y — X be the normalization of X in k(X) —
k(V). Then, on the one hand,
V ——
PUi 0
U——

and, on the other hand, since X is normal and k(X) — k(V) is a finite separable field extension,
p:Y — X is finite, dominant and etale on p~1(U) =V =Y \p~ (X \ U). But X \ U has codimension
> 2 in X hence, since p: Y — X is finite, p~1(X \ U) has codimension > 2 in Y as well. Thus, from
theorem 3.25 p: Y — X is etale. O

~

p

-~

b

Now, let X be a locally noetherian regular scheme and f : X ~» Y be a rational map. Write
Us C X for the maximal open subset on which f : X ~» Y is defined and assume that X \ Uy has
codimension > 2 in X. Then, one has the canonical functors:

R%t — Retf ~ R%
and, correspondingly, for any geometric point = € Uy, profinite group morphisms:
(X, z)=m (Uy, x) — m(Y, f(z)).

Thus, if one consider the category C of all connected, locally noetherian, regular schemes pointed
by geometric points in codimension 1 together with dominant rational maps defined on an open
subscheme whose complement has codimension > 2, one gets a well defined functor m1(—) : C —
ProGr, (X,z) — 71 (X, ). In particular,
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Corollary 3.27 (Birational invariance of fundamental groups) Let k be a field, X, Y two schemes
proper over k and reqular and f : X «~ Y a birational k-map. Then, for any geometric point x € Uy
one has the canonical profinite group isomorphisms

(X, 2)=m(Up, 2)>m(Up, f(x)=m(Y, f(2)).

Proof. If k is a field, X a normal k-scheme and Y a scheme proper over k then any rational k-map
[+ X ~Y is defined over an open subset Uy C X such that X \ Uy has codimension > 2. Thus the
claim follows from corollary 3.26. [

Example 3.28 Let k be any field and consider the blowing-up f : B, — P% of P} at any point € P7. Then for any
geometric point b € By:
m1(X, b) 5w (P, £ (b))

However, B, and P? are not k-isomorphic (any two curves P7 intersects whereas the exceptional divisor E in B, does not
intersect the inverse images of the curves in P? passing away from z). The above result is straightfroward in characteristic
0 since, combining Riemann Existence Theorem, specialization theory and the short exact sequence for geometrically
connected schemes over fields, one gets : 71 (X, z)5m1 (P3, f(b))=I'%. But it is not in positive charactaristic and shows,
in particular, the complexity of higher dimensional anabelian geometry.

3.3.2 Kernel of the specialization morphism

Ramification Recall that if (O, M) is a discrete valuation ring with fraction field K = Frac(O) and
residue field k = O/ M and if L/K is a finite Galois extension then the integral closure O of @ in L
is a free O-module of rank n = [L : K]. For any maximal ideal My, of OF write kp, := OF /M, for
the residue extension and:

Dpjx(Mp) :={o € Gal(L|K) | (M) = M}
for the decomposition group of My, in L /K. Thus we have a canonical group epimorphism Dy, /i (M) —
Gal(kpay |k) whose kernel is the inertia group of My in L/K and denoted by I (Myg). Since

Gal(L|K) acts transitively on the maximal ideals of OF, the Dy g (My) (resp. the Iy (My)) form
a whole conjugacy class Dy (O) (resp. I,/ (O)) of subgroups of Gal(L|K) so we will simply write
Dy i (O) (resp. Ir/(0O)) for a representative of D, (O) (resp. Tk (0)). One says that L/K is
tamely ramified over O if er g (O) = |11,k (O)| is prime to the characteristic of & and that L/K is
unramified over O if ey (O) = 1. We then have the following elementary properties:

Lemma 3.29 Let w denote a uniformizing parameter of M.

1. If L/K is tamely ramified over O then the canonical morphism

Oo : Ik (Mp) — (OH*, o — a(r) mod M,

s

is a monomorphism and induces an isomorphism 6y : IL/K(M)%,ueLlK(O)(K). In particular,
I1,/x(My) is cyclic.

2. (Transitivity) Let K C L C M be finite field extensions with L/K and M/K Galois. Let My
be a mazimal ideal of OM and My, := My N OL. Then one has a commutative diagram with
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exact rows and columns:

1 —— vy (M) —— Iy g (M) —— I g (Mp) ——1

11— Dy M) —— Dy (M) —— Dy (Mp) ——1

1 — Gal(M|L) —— Gal(M|K) — Gal(L|K) — 1

3. (Abhyankar’s lemma) Let L/K and M/K be two finite Galois extensions tamely ramified over O and
assume that er| i (O)lerrx (O). Then, for any mazimal ideal My, of OL, L.M is unramified over O/L\AL.

Example 3.30 Let 7 € M be a uniformizing parameter and n > 1 an integer prime to the characteristic of k.
Assume that K contains the nth roots of unity. Then L := K[X]/ < X" —x > is a finite Galois extension, tamely
ramified over O and with Galois group I,k (O) ~ Z/n.

Kernel of the specialization morphism We retain the notation of §3.2. Let S be a locally
noetherian scheme and f : X — S a smooth, proper, geometrically connected morphism; our aim
is to try and describe the kernel of the specialization epimorphism 7 (X1,71) — 71 (X0, Zo)-

Theorem 3.31 For any finite group G of order prime to the residue characteristic p of S at sg and
for any profinite group epimorphism ¢ : m(X1,%T1) — G there exists a profinite group epimorphism
oo : m1(X0,To) = G such that ¢g o sp = ¢. In particular, sp induces a profinite group isomorphism

sp®) 2 (X1, 71) ) — 71 (Ko, 70)P,
where (—)(7’/) denotes the prime-to-p profinite completion.

Proof. As one can always find a complete discrete valuation ring A with algebraically closed residue
field and a morphism spec(A4) — S sending the generic point of spec(A) to s; and the closed point
of spec(A) to sg, one may assume without loss of generality that S = spec(A). Let K and k denote
the fraction field and residue field of A respectively and let K < K be an algebraic closure of K
and K < K?* the separable closure of K in K < K. For any subring A C B C K, we will write
Xp := X x4 B. For instance, X = X4, X; = Xg, X1 = X7, Xo =X = X5 ete.

Since the canonical morphism spec(K) — spec(K*®) is faithfully flat, quasi-compact and radiciel,
it follows from corollary 3.4 that the canonical profinite group morphism (X4, T1) =7 (Xgs, 27) is
an isomorphism. Also, it follows from step 2 of the proof of theorem 3.10 that the canonical profinite
group morphism 71 (Xo, Zo) = (X, E(O)) is an isomorphism. Hence we are to determine the kernel of
T (Xks,T]) = m(X,T(g)) or, equivalently, to solve:
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Problem: Given f° :Y® — Xgs € R%Ks Galois with group G, when can we say that there exists
f:Y — X € R Galois with group G such that:

Vs ——Y 7
fl e |
XKSHX

Since K* is the inductive limit of the finite extensions of K contained in K, there exists a finite
separable extension K — K and a finite etale Galois cover f; : Y] — X, € R%K such that:
1

Ys Y1
fsl O lﬁ
XKS —— XKl.

Thus the problem becomes:

Problem: When does there exist a finite etale Galois cover f : Y — X € RS and a finite separable
extension K1 — Ko such that:
}/1K2 — Y ?

flKQ\L O if
XK2 — X

But, given any finite separable extension L/K the integral closure AL of A in L/K is again a
complete discete valuation ring with residue field k. Hence, considering the cartesian square:

XA X

| e |

spec(Al) — spec(A)

Writing (X 41 )o for the closed fibre of X 7., X 3, — X induces an isomorphism (X ;. )o—Xo, whence
the canonical profinite group isomorphisms:

™1 (X gos 2(0) =™ (X jr)o, ) =71 (Xo, 20) =71 (X, 2(0))-

So, the problem can now be reformulated as:

Problem: When does there exist a finite separable extension K1 — Ko and f 1Y — X;k, € R§§~K2
A
Galois such that:
Yik, y 7

flKQi O \Lf

XKZHXAK2

For any finite extension L/K, fz. : X, — spec(flL) is smooth so X 7, is regular. In particular,
since (X 5.)o is an irreducible (normal and connected) closed subscheme of codimension 1 (flatness),
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its local ring Ox 1, := O Xi0(Xi1)0 1S @ discrete valuation ring with fraction field L and residue field
k(Xo) (hence of characteristic p). Also, X 7, being regular, hence normal, and connected is also irre-
ducible thus let R;, denote its ring of rational functions. But, then, it follows from theorem 3.25 (and
theorem 2.10) that finite etale Galois covers f : Y — X iv € R%AL correspond to finite Galois field
extensions Ry — Si, € F'SAg, unramified over Ox r.

With these notation, let u; be a uniformizing paramater for A% hence for Oxk,andn > 1 a
prime-to-p integer. Set Ko := K;[T|/ < T"—u > /K; then Rk, = Rx, @K, K2 = R, [T]) < T"—uy >
and, in particular Rx, < Rp, is tamely ramified over Ox g,. If we assume that G is of prime-to-p
order then Rg, — Sk, is also tamely ramified over Ox g,. So, if we choose n > 1 prime-to-p and
multiple of the order of the inertia group of Rk, — Sk, over Ox k, (e.g. n = |G|) then it follows
from lemma 3.29 (3) that Rk, — Sk, = Sk, Qry, Bk, 18 unramified over Oy g, (in other words,
Jik, 1 Y1k, — Xk, extends to a finite etale Galois cover f:Y — X ;x, € R%AKQ. O

3.4 Fundamental groups of curves: a short review.

Let k be a field of characteristic p > 0 and let X be a geometrically connected curve over k. Fix a
geometric point T : spec({2) — X with image x : spec(2) — X and s : spec(£2) — spec(k).Then the
structural morphism X — k induces the canonical short exact sequence of profinite groups (2):

1 — m (X%, @) — m (X, x) — m(spec(k),s) — 1.

Any point in X (k) produces (a conjugacy class of) splitting(s) of (2) but, even if X (k) = (), one has a
well-defined action p : I'y — Out(m1 (X7, T)).

If X is normal and T, = are geometric generic points, the short exact sequence (2) can be rewritten
in terms of usual Galois groups. Indeed, let Mx /k(X) (resp. Mx, /k(X)) denote the maximal algebraic

extension of k(X) (resp. k(X)) unramified over X (resp. Xz) in Q. Then (2) becomes:
1— Gal(MXE|E(X)) — Gal(Mx|k(X)) —» Ty — 1.

So, to understand the ”arithmetic fundamental group” 71 (X), one should first try to describe the
”geometric dundamental group” m1(X7) and the outer Galois representation p : I'y — Out(m1(X7)).
We sum-up below the main classical results about these when X is a smooth, geometrically connected
k-curve X of type (g,7).

3.4.1 Proper curves

As already mentioned in step 2 of the proof of theorem 3.22,
- If char(k) = 0 then one has a profinite group isomorphism I'g o= (X7%);
- If char(k) = p > 0 then one has a profinite group epimorphism fg70 —» m1(X%), which, according to

theorem 3.31, induces an isomorphism on the prime-to-p completions f‘;{’ 3/i>7r1(XE) @),

These results extend to non necessarily proper curves of type (g,r).

3.5 Curves of type (g,7)

A smooth, geometrically connected k-curve X is said to be of type (g,r) if, writing X — X for the
smooth compactification of X, g is the genus of X and r is the degree over k of the reduced divi-
sor Dx := X \ X. A k-curve X of type (g,7) is said to be hyperbolic if it has Euler characteristic
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2—2g —r <0 (that is (g,7) # (0,0),(0,1),(0,2),(1,0)) or, equivalently, if Autg, z(Xy) is finite.

We sum up below, without proof, the main statements about smooth, geometrically connected
k-curves of type (g,7). For proofs and extension to higner dimensional schemes, we refer to [GMT71].

Write Dx (k) = {t1,...,t,}.

1. p=20. As X is of finite type over k, one can assume that k is finitely generated over Q and any
fields embedding k — C induces an equivalence of categories R%E R R%C. From Rieman exis-

tence theorem, one gets an equivalence of categories Rggg R REtEn whence a canonical profinite
group isomorphism:

¢ fgn“ = W@l)topiml (X%)-
Fix a compatible system ((y,)n>0 of primitive nth roots of unity in k (that is such that %, = G,
n,m > 0) and write M X5 as an inductive limit M Xp = Un>0M,, of finite Galois subextensions of
M Xz/ E(X). Also, fix a compatible system (t;,)n>0 of places of M, above t; and a compatible

system (ujpn)n>0 of uniformizing parameters of the (¢;,)n>0 (that is such that Uy = Ui,
n,m > 0). Then, for each n > 0, one gets a canonical (well-defined) group monomorphism

W(ui,n)
Us

7,M

I, — EX, w mod #;,, where Iy, denotes the inertia group of t;, in M, /k(X).
The distinguished genémtor of the inertia above t; in 71 (xz, T) associated with these data is the
inverse image of ((| I, n\)"20 via the canonical morphism @ Ly, ,, — k™. These describe a whole
conjugacy class Wi, in 71 (23, @), called the inertia canonical class, when the data ((,)n>0 and
(ti,n)nZO vary. R

Then ¢ sends the generator ; of I'y, to a distinguished generator wy, of the inertia group Iy, of
t; in MXE/k(X), 1 =1,...,r. Furthermore,

Lemma 3.32 (Branch cycle argument) p : I'y — Out(n1(X3, 7)) acts on the inertia canonical

class as follows. For any o € T'y, p(o)(Wy,) = Wf((t?)), where x : Ty, — Z denotes the cyclotomic
character.

Note that fo,o = f071 =1, lA“o,g = Z, o= 72 and for any (g,7) # (0,0),(0,1),(0,2),(1,0), fw
is non abelian. Hence X is hyperbolic af and only if 71 (X7, ) is non-abelian.

2. p > 0. The category Rgx of all finite covers of X etale over X and tamely ramified over Dy

with fiber functors defined by geometric points € X Galois with corresponding fundamental
group the so-called tame fundamental group W{)X (X, z). Note that, by definition, ﬂ'lDX (X,a) is
the maximal quotient of 71 (X, a) classifying finite covers of X etale over X and tamely ramified
over Dx. If z is a geometric generic point on X then 7r1D X(X,a) is just the Galois group of the
maximal algebraic extension M)?X /k(X) unramified over X and tamely ramified over Dx. In
particular, one again gets the short exact sequence of finite groups:

1— WlDX(XE,f) — 7T1DX(X,£C> — mi(spec(k),s) =T — 1

and a well-defined action p : I'y, — Out(ﬂf)X(XE, T)).
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Theorem 3.33 (Pro-p completion of the fundamental group) Let rx := dimg,Jac < wlpl < g

denotes the p-rank of the jacobian of X. Then

(i) If r = O then 7r§p) (X3,7) is a free pro-p group on rx generators.

(ii) If r > O then ng) (X%, ) is a free pro-p group on |k| generators.

The theory of specialization also works along the same guidelines. More precisely,there exists
a smooth W (k)-curve W(X) and a divisor W(Dx) € W(X) etale on W (k) such that, with
W(X):=W(X)\ W(Dx), one has cartesian squares

X—W(X), X —W(X)

ol |-

k——W(k) k—W(k)

The cartesian squares

give rise to a commutative diagram of profinite groups

T (X) = m X (W(X)) =——m(X1)

| | |

Iy ——— mi(spec(W(k))) <—— I'x,

where 77{3 X(W (X)) is the maximal quotient of (W (X)) classifying finite covers of W(X)
unramified everywhere except over W(Dx) and the generic point of X and 7! (spec(W (k))) is
the Galois group of the maximal algebraic extension K — K tamely ramified over W (k).

Theorem 3.34 (specialization of tame fundamental groups) Let W (k)! denote the extension of
W (k) to K, then the canonical profinite groups morphism

(W (X)) = X (W (Xwey)
s an epimorphism and the canonical group morphism
X (X)X (W (X )w (e, W (a))
is an isomorphism, which yield a well-defined specialization epimorphism.:
sp iy X (W (X)) - 70 (Xp).

Furthermore, sp : W?X W(X)z) — 7T1DX (X%) induces a profinite group isomorphism on the

prime-to-p completions:

s (W (X)) =t (X).
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As a result, one gets a canonical profinite group epimorphism
= D
¢ Lgr — m % (Xp),

such that for each ¢ = 1,...,r, ¢ sends the generator ~y; of fg,r to a distinguished generator wy,
of the inertia group I, above ¢; and pDX(cr)(Wti) = W;C((:)), o €Ty.

Remark 3.35 The only known proof of the above results is via Riemann Existence Theorem hence resorts to transcen-
dental methods. Finding an algebraic proof remains a widely open question. In [BE0S], such an algebraic proof, relying

on Grothendieck-Ogg-Shafarevich formula, is provided for the maximal prime-to-p solvable quotientﬂp />’T65(XE, T) of
T (XE7 T).

Remark 3.36 From the above, the following information can be read out of 71 (Xz):

1. p, except if X =P}, . Indeed, p = 0 if and only if for any prime I ﬂl(XE)(l) is of finite type and p > 0 if and only
if there exists a prime [ such that m; (XE)(Z) is not of finite type, in which case I = p.

2. Whether X is affine or proper. Indeed, X is proper if and only if m (X3) (P) is of finite type.
3. If X is complete then 2g = rank((m1(X7)®)?), I # p and rx = rank((m (X5)®)).

The general idea of Grothendieck’s anabelian geometry is that, considering the arithmetic fundamental group 71 (X)
instead of the geometric fundamental group 71 (X%), one should be able to recover much more information about X, up
to reconstruct its isomorphism class up to canonical ismorphisms.

4 Anabelian geometry - a tentative of definition

The idea of Grothendieck’s anabelian geometry is that, provided they satisfy some ”anabelian” con-
ditions, geometry and arithmetic of schemes should be encoded in their fundamental group. Though
there is no clear definition of what ”anabelian” conditions are or of what "being encoded in its fun-
damental group” means, we will try and make these ideas more explicit.

Note that this section is (at least currently), rather a catalogous of classical anabelian conjectures
and results but does not contain any proofs (nor even sketches of). However, the reader interested in
going further can consult the comprehensive lecture notes of F. Pop for the A.W.S. 2005 [P05].

4.1 Anabelian categories

In the following, given a profinite group G, we will write

i: G — Aut(G)
g — ilg=g-—g"

for the inner conjugation morphism, Inn(G) and Out(G) for the image and cokernel of i respectively.
Recall that ker(i) = Z(G) is just the center of G.

Also, given a category C, we will write GrC for the associated groupoid that is Ob(GrC) = Ob(C)
and Homg,¢ = Isome.

Let S be a connected scheme. Write Sch/S for the category of S-schemes with dominant morphisms

and Sch®/S C Sch/S for the full subcategory of connected objects. The theory of fundamental groups
exposed in the preceding sections motivates the introduction of the following category Gg defined by:
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- Objects: pairs (G, ), where G is a profinite group and 7 : G — 71(S) is a profinite group
morphism. Write G for the kernel of 7 : G — m1(9).

- Morphisms: Given two objects (Gj,m;), i = 1,2 in Gg, the set of morphisms from (G, )
to (G, m2) in Gg is the set I/ ~, where I is the set of all open profinite group morphisms
¢ : Gi — G such that there exists v, € m1(S) with m 0 ¢ = i(y4) o 1. Then Inn(G»)
acts naturally on the right on I wia I x Inn(G2) — I, (¢,i(gy)) — i(gs) o ¢ and one sets
I/ ~:=1/-Inn(G2).

Then, the etale fundamental group functor m(—) induces natural functors:
Ag: Sch’/S — Gg, GrAg : GrSch®/S — GrGs

With these notations, one can make an attempt to define anabelian categories. A full subcategory
Ag C Sch®/S is said to be S-Hom-anabelian (vesp. S-Isom-anabelian) if Ag : As — Gg (resp. if
GrAg : GrAs — GrGg) is fully faithfull. When Ag has a single object X, we say that X is S-Hom-
anabelian or S-Isom-anabelian if Ag is.

Requiring the full faithfullness of Ag or even GrAg might be too much and one might be led
to consider weaker notions. Note that Ag induces a set-theoretical map at the level of isomorphism
classes of objects:

g : Ob(Ag)/Isom 4, — Ob(Gg)/Isomg,.

With this notation, a full subcategory Ag C Sch?/S is said to be S-wlsom-anabelian (resp. S-wwlsom-
anabelian) if Ag : Ob(Ag)/Isom 4, — Ob(Gs)/Isomg, is injective (resp. has finite fibers).

Remark 4.1

1. Let us mention two other possible variants for the definition of Gs and Ags.

(a) Birational variant: Replace 71(S) with I'y(s) in the definition of Gs and define As to be the relative function
field functor sending X — S to k(S) — k(X).

(b) Tame variants: For instance, if S = spec(k), with k a field of characteristic p > 0, replace the fundamenta
group functor 71 (—) with the tame fundamental group functor 7}(—) in the definition of As. We leave it as
an exercise to the reader to generalize those variants for more general notions of tame fundamental groups.

2. Note that most of te above formalism can be extended to any Galois category (See proposition 7).

4.2 Examples and historical conjectures
4.2.1 Non anabelian categories

So far, most of the examples we considered are NOT anabelian. For instance, if S = spec(C), Riemann
existence theorem roughly tells us that full subcategories Ac C Sch®™F /C are far from being anabelian
since the fundamental group of their objects encodes no more than topological data of the associated
complex analytic space. If we replace C by any algebraically closed field k of characteristic 0, lemma
3.21 tells us that this remains true (at least) for full subcategories A, C Sch?* /k (of proper k-
schemes). For instance, if Ay is the category of all d-dimensional abelian varieties over k then the
image of 2A; consists of a single element, namely 724, Similarly, if Aj is the category of all genus g
smooth proper curves over k then the image of 2l consists only of ng0 etc. If we replace C by any
algebraically closed field k of characteristic p > 0, things already change drastically (see section 4.3),
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which, in particular, shows the p-part of the fundamental group is a rich invariant over such fields.
Riemann Existence theorem and the specialization theory of fundamental group suggest that one
should search for anabelian categories among arithmetic ones. This was, actually, the original intuition
of Grothendieck. Another motivation comes from Tate conjecture and side results proved in [F83].
Indeed, let C; be a smooth projective curve over k; recall that 71(C;)% = [, Ty(Pic(Ci|k)) as Z[Tk]-
modules, i = 1,2. So, if m1(C1)% and 7 (C5)? are T'j-isomorphic then Pic(Cy|k) and Pic(Cs|k) are
isogenous over k and, fixing Co, there are only finitely many possibilities for the isomorphism class of
Pic(C1|k) over k (isogeny theorem) hence for the isomorphism class of C; over k (Torelli’s theorem).
This already shows that the category Ay of all smooth projective curves over k is k-wwlsom-anabelian.
But the abelianization (X )“b of the fundamental group viewed as a I'p-module encodes much less
than the datum of m1(X) — I'y, which one can expect to be rich enough to narrow the number of
smooth projective curves over k with the same fundamental group from ”finitely many” to ”one”.

4.2.2 Grothendieck’s examples of categories that should be anabelian

Let k be a finitely generated field (over its prime field). Then, the following categories are expected

to be k-anabelian®:

- A, = category of all 0-dimensional connected schemes of finite type over k.

- A = category of all smooth, geometrically connected and hyperbolic curves over k. Recall that a

curve X over k is said to be hyperbolic if, writing X < X for the smooth compactification of X, ¢

for the genus of X and r for ]X' \ X| then 2 — 2¢g — r < 0 (that is (g,r) # (0,0), (0,1),(0,2), (1,0) or,

equivalently, Autz(X) is finite).

- A = category of all elementary anabelian schemes over k. A scheme X over k is said to be an

elementary anabelian scheme over k if there exists a finite sequence of k-morphisms X = Xy — X; —
- — X, = spec(k) with X;_; — X, a relative hyperbolic curve, i = 1,...,n.

Eventually, the moduli schemes M, (2—2g—r < 0) and A, 4 are also expected to be Z-anabelian.
Apart from these, there does not seem to have clearly stated anabelian conjectures in higher (i.e. > 2)
dimensions. (Recall corollary 3.27 and example 3.28 ).

4.2.3 The section conjecture

Let k be a field and X a normal scheme geometrically connected over k. Then one has the canonical
short exact sequence from Galois theory:

1 -m(Xg) »m(X) =Ty —1 (9)

Now, any k-rational point x : spec(k) — X induces a (71 (X73)-conjugacy class of) section morphism(s)
sz I'y — m1(X) splitting (9). The m(X5)-conjugacy classes of section morphisms s : I'y — 71(X)
splitting (9) can be regarded as homg, (I';, 71 (X)) and a special case of the section conjecture asserts
that if k is a finitely generated field of characteristic 0 and if X is a proper hyperbolic curve over k
then the following canonical map is bijective:

Homgp i (spec(k), X)=Homg, (I'y, 71 (X)). (10)

5 At this level, we do not give a precise meaning to ”k-anabelian” since Grothendieck himself remained vague in his
formulations.
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More generally, let X be a hyperbolic curve of type (g,r) over k and let X — X be its smooth
compactification. Then, for any k-rational point & € X (k), the short exact sequence

1— ka(X)(JE) — Dpk(x)(j) — T, —1 (11)

always splits but this splitting is not unique up to inner conjugation by elements of FE( X) hence, if
T € X(k)\ X(k), & gives rise to several 7 (Xz)-conjugacy classes of splitting sections of (9) and the
map (10) does not extend a priori to homge, i, (spec(k), X). A splitting section s : I'y, — m1(X) of (9)
is said to be unbranched if s(I'y) is contained in no decomposition group of a point z € X (k) \ X (k)
in 71(X). A basic form of the section conjecture can thus be formulated as follows:

Conjecture 4.2 (Section conjecture) Let k be a number field and let X be a hyperbolic curve over k.
Then the canonical map Homg,y, /1, (spec(k), X)—=Homg, (I'y, 71 (X)) is injective and induces a bijection
onto the set of mi(Xy)-conjugacy classes of unbranched sections. Furthermore, any splitting section
s: Iy — m(X) of (9) arises geometrically (i.e. is induced by a splitting of a short exact sequence like

(11)).

4.3 Results
4.3.1 0-dimensional case

Theorem 4.3 (Artin-Schreier) Let k be a field with non trivial finite absolute Galois group I'y. Then
'y =7Z/2 and k is real-closed (in particular, k has characteristic 0 and k = k(y/—1)).

The Artin-Schreier theorem shows that the assumption that the absolute Galois group is non trivial
finite already imposes restrictions on k but these are not on the isomorphism type of k (there are
infinitely many isomorphism classes of real closed field and their classification seems to be currenly
out of reach). However, if k C Q is a field of algebraic numbers, Artin-Schreier theorem shows that
if £ has non trivial finite absolute Galois group then k is isomorphic to R N Q. In particular, the
subextension of Q with non trivial finite absolute Galois group are exactly the c(R N Q), o € I'g.

Later, Neukirch proved a p-adic analog of the Artin-Schreier theorem, which was the first main
step towards the proof of the 0-dimensional anabelian conjectures.

Theorem 4.4 (Neukirch) Let k C Q be subfield and p a prime number.

(i) Assume that T'y ~T'q,. Then there exists a place P € P(Q) such that k is the decomposition field
of P in Q/Q.

(ii) Assume that I'y is isomorphic (as profinite group) to an open subgroup of I'g,. Then there exists
a place P € P(Q) such that k is a finite extension of the decomposition field of P in Q/Q.

A consequence of Neukirch theorem is that, given two number fields ki, ko, any profinite group
isomorphism ® : I'y, =T, induces an arithemetical equivalence ¢ : P(k1)=>P(ke) that is a bijection
between the places of k1 and thowe of ko preserving the invatiants e(P|p) and f(P|p). this, in turn,
implies that if k1/Q is Galois then k; and ks are isomorphic a fields hence, automatically, as Q-
extensions. But since k1/Q is norma, one gets k; = ks as subextensions of Q/Q hence Iy, =T}, as
subgroups of I'gp. In particular, this shows that any open normal subgroup of I'g is characteristic.
This lead Neukirch to ask:
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- Do we have Aut(I'g) = Inn(I'g)?
- Is any profinite group isomorphism @ : Iy, =I';, as above induced by inner conjugation by an
element 0 € I'p?
Both answers were anwered positively in the 70’s to get:

Theorem 4.5 (Neukirch-Tkeda-Iwasawa-Uchida) Let k1, ko be global fields. The nfor any profinite
group isomorphism ® : I'y, =Ty, there exists a unique field isomorphism ¢ : ki—=k$ such that ®(g1) =
¢ tq19, 1 € Tky. In particular, - ¢(k1) = ka.

- Isom(kq, kg)iﬂsomgz (Fkl , F]Q)(: Out(Fkl , FkQ)).

Given a field k, let k% denote its purely inseparable closure. Also, two fields morphisms ¢, 9 : k; —
ks are said to be quivalent up to Frobenius twist if ¢ = ¢ o Fr”™, where Fr : ky -k, x s 2Char(k)
denotes the absolute Frobenius on k;. With these notation, let us give a more precise formualtion of

the 0-dimensional anabelian conjectures:

Conjecture 4.6 (0-dimensional anabelian conjectures)

1. Absolute forms:

(a) O-dimensional Z-Isom-anabelian conjecture: Given any finitely generated infinite fields ky,
ky and any profinite group isomorphism ® : I'y, =Ty, there exists a field isomorphism
¢ : ko=ky, unique up to Frobenius twist, and such that ®(g1) = ¢ L ogi o, g1 € Ty, (in
particular, ¢(kb) = ki).

(b) 0-dimensional Z-Hom-anabelian conjecture: Given any finitely generated infinite fields ki,
ky and any open profinite group morphism ® : I'y, — Ty, there exists gﬁeld embedding
¢ 1 ko — ki, unique up to Frobenius twist, and such that ¢(ks) C ¢(ka) and ®(g1) =
¢ togiop, g1 €Ty, (in particular, ¢(ks) C kL ).

2. Relative forms: Let k be a field.

(a) O-dimensional k-Isom-anabelian conjecture: Given any fields extensions k1 /k, ka/k and any

profinite group Tg-isomorphism ® : Ty, =T}, there exists an isomorphism ¢ : ko—ky of k-
extensions, unique up to Frobenius twist, and such that ®(g1) = ¢~ Logio¢, g1 € Ty, (in
particular, ¢p(kb) = k).

(b) 0-dimensional k-Hom-anabelian conjecture: Given any fields extensions k1/k, ka/k and any

open profinite group I'p-morphism ® : I'y, — I'y, there exists an embeddjng b ko — ki
of k-extensions, unique up to Frobenius twist, and such that ¢(k2) C ¢(k2) and ®(g1) =
¢ togiop, g1 €Ty, (in particular, ¢(ks) C kL ).

The final proof of the 0-dimensional Z-anabelian conjectures was finally established by Pop (Isom-
form) in all characteristics [P94] and Mochizuki (Hom-form) in characteristic 0 [M99].

Theorem 4.7 (0-dimensional anabelian conjectures) Conjecture4.6 (1) (a) holds in any characteristic
and conjecture 4.6 (1) (b) holds in characteristic 0.

Actually, Mochizuki’s result is a consequence of its [M99, Th. B] stating that for any sub-p-adic field
k (see section 4.8) conjecture 4.6 (2) (b) holds for regular, finitely generated extensions of k.
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4.3.2 1-dimensional case

Given a k-curve X — k, let X’ — k' denote the normalization of X in k(X)!/k(X). Also, write
X(n) == X Xg pm k — k for the nth Frobenius twist of X — k. With these notation, one can, as in
the 0-dimensional cases, give a precise formulation of the 1-dimensional anabelian conjectures.

Conjecture 4.8 (1-dimensional anabelian conjectures)

1. Absolute forms:

(a) 1-dimensional Z-Isom-anabelian conjecture: Given any hyperbolic curves X; — ki, Xo —
ko defined over finitely generated base fields ki, ko and any profinite group isomorphism
® : m1(X1)>m1(X2) there exists a curves isomorphism ¢ : X=X unique up to Frobenius
twist and such that ® = 71(¢).

(b) 1-dimensional Z-Hom-anabelian conjecture: Given any hyperbolic curves X1 — ki, Xo —
ko defined over finitely generated base fields k1, ko and any open profinite group morphism
® :m(X1) — m1(X2) there exists a dominant curves morphism ¢ : Xt — X3, unique up to
Frobenius twist and such that ® = w1 (¢).

2. Relative forms: Let k be a field.

(a) 1-dimensional k-Isom-anabelian conjecture: Given any hyperbolic k-curves X1, Xo and any
profinite group Tg-isomorphism ® : w1 (X1)=>7m1(X2) there exists a k-curves isomorphism
¢ X1=X5, unique up to Frobenius twist and such that ® = m1(¢).

(b) 1-dimensional k-Hom-anabelian conjecture: Given any hyperbolic k-curves X1, X9 and any
open profinite group T'p-morphism ® : w1 (X1) — w1 (X2) there exists a dominant k-curves
morphism ¢ : X7 — X3, unique up to Frobenius twist and such that ® = mi(¢).

We list below the main ”classical results” (quoting Akio Tamagawa) about 1-dimensional anbelian
conjectures together with the original references.

1. A. Tamagawa [T97]:

(a) Affine (hyperbolic) curves over finite fields.
(i) Conjecture 4.8 (1) (a) (resp. the tame variant of conjecture 4.8 (1) (a)) holds for affine
(resp. affine hyperbolic) curves over finite fields.
(ii) Given a finite field k, conjecture 4.8 (2) (a) (resp. the tame variant of conjecture 4.8
(2) (a)) holds for affine (resp. affine hyperbolic) k-curves.

(b) Affine hyperbolic curves over finitely generated fields of characteristic 0.
(i) Conjecture 4.8 (1) (a) holds for affine hyperbolic curves over finitely generated fields of
characteristic 0.
(ii) Given a finitely generated field k of characteristic 0, conjecture 4.8 (2) (a) holds for
affine hyperbolic k-curves.

2. S. Mochizuki:
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(a) Hyperbolic curves over finitely generated fields of characteristic 0 [M96]. The results below
extend Tamagawa’s results (b) to arbitrary hyperbolic curves.
(i) Conjecture 4.8 (1) (a) holds for hyperbolic curves over finitely generated fields of char-
acteristic 0.
(ii) Given a finitely generated field k of characteristic 0, conjecture 4.8 (2) (a) holds for
hyperbolic k-curves.

(b) Hyperbolic curves over sub-p-adic fields [M99]. A field k is said to be sub-p-adic if it can
be embedded into a finitely generated extension of Q,. Given a sub-p-adic field £ and
a geometrically connected k-scheme X, set N®) (X7) = ker(m(Xg) — m (XE)(p)), where
m(X7) — m1(X7)®) denotes the pro-p completion of 71(X7). Since NP)(X7) is characteris-
tic in 1 (X7), it is normal in 71 (X) and one can form the quotient Hg?) = (Xg) /NP (X7).
With these notation, the short exact sequence

1 —-m(Xy) »m(X) =T —1
induces a short exact sequence:
1— Wl(XE)(p) — Hg]()) —Ir—1 (12)

and the following strong variant of conjecture 4.8 (2) (b) holds [M99, Th. A]: for any

hyperbolic k-curve X the functors Y+ Homge, (Y, X) and Y +— Homg, (H§£’ ), Hg?)) from
the category of geometrically integral k-schemes of finite type to sets are isomorphic and
this isomorphism is functorial in X.

From this result, Mochizuki derived the following higher dimensional significative result in
anabelian geometry [M99, Th. D]. An hyperbolically fibered surface X over k is a k-scheme
X=X \ D, where X is a smooth proper hyperbolic curve over an hyperbolic k-curve S
and D C X is a divisor, etale on S. Then conjecture 4.8 (2) (a) holds for hyperbolically
fibered surfaces over k.

3. J. Stix: Let k be a finitely generated field of characteristic p > 0.
Recall that a k-curve X is isotrivial if there exists a finite extension F' of the base field I, such
that X}, is defined over F'.

(a) Affine hyperbolic curves over finitely generated fields of characteristic p > 0 [S02]. The tame
variant of conjecture 4.8 (2) (a) holds for any affine hyperbolic k-curves X1, Xy provided
one of them is not isotrivial. If Xy, X5 are two affine isotrivial hyperbolic k-curves, then
the the image of isomgep, /5 (X1, X2) — isomg, (7} (X1), 7} (X2)) is dense and the uniqueness
part of the tame variant of conjecture 4.8 (2) (a) holds.

(b) Hyperbolic curves over finitely generated fields of characteristic p > 0 [S02]. Conjecture 4.8
(2) (a) holds for any hyperbolic k-curves X;, Xo provided one of them is not isotrivial. If
X1, Xz are two isotrivial hyperbolic k-curves, then the the image of isomgcs (X1, X2) —
isomg, (71(X1),m1(X2)) is dense and the uniqueness part of conjecture 4.8 (2) (a) holds.

4.3.3 Higher dimensional results.

As already mentioned, the picture in dimension > 2 is unclear. So, let us mention only a few results
(kindly communicated by Akio Tamagawa during his lectures at the ACAG 2007).
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. Shimura varieties (Y. Ihara, H. Nakamura): Let & be a number field then no Siegel or Hilbert
modular variety of dimension > 2 is anabelian (Recall that A, 4 was expected to be anabelian).

. Elementary anabelian schemes:

- S. Mochizuki: The category of elementary anabelian surfaces over sub-p-adic fields is k-Isom-
anabelian.

- Given an hyperbolic curve X — k, let X, := {x € X" | ; # zj, 1 < i # j < n} denotes the
configuration space for n distinct ordered points on X. Then X, — X,, — -+ — X1 = X are
elementary anabelian schemes and:

— H. Nakamura, A. Tamagawa: if k is a finitely generated field of characteristic 0 then X, is
k-Isom-anabelian for X = P} \ {0, loo}. This results was next extended by

— S. Mochizuki, H. Nakamura, N. Takao: if k is a finitely generated field of characteristic 0 then
X, is k-anabelian for any hyperbolic curves X.

— S. Mochizuki, A.Tamagawa: if k is a sub-p-adic field then the category C, C Sch®"* /k of all
etale covers of some X,,, for X — k a proper hyperbolic k-curve is k-Isom-anabelian.

. Moduli spaces of curves:
- J. Stix: If § is a normal scheme and U C S a non-empty open subset then the following
canonical diagram is cartesian:

Homg., z(S, My,) — % Homg, (1 (S), m1 (My,)

e ]

Homg.,z.(U, My.r) — % Homg, (1 (U), w1 (M,,))-

- M. Boggi, P. Lochak®: Assume thatif g=0,r>5,ifg=1,r>3,ifg=2,r>1andif g > 3,
r > 0. Let k be a sub-p-adic field and X — M, 1, € Rﬁf[q .- Then the canonical map:

Autgep x(X)=0utg, (m1(X3))

is bijective (where * means inertia preserving).
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