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Forewords

In its current form, the text below should not be regarded as very well-structured lecture notes
but rather as a diary of my own learning about fundamental groups.

Section 1 is the result of a master 2 thesis I directed about chapter V of [?]. Thus it is rather
detailled and, hopefully, fills some of the gaps in the litterature.

Section 2 contains some of the most striking results about etale fundamental groups and corre-
sponds to my reading of chapter 8 to 12 of [?]. I tried and sketch most of the proofs there, insisting
on the main arguments. I hope the final result will be more readable and synthetic than the original
source.

Section 3 is just an overview of some classical results about anabelian geometry. I have not in-
cluded any proofs (nor even sketch them) for such works already exist in the litterature and are, in
my opinion, very accessible to beginners.
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Notation

- For any field k and any algebraically field closed extension k ↪→ Ω:
– k ↪→ ks: separable closure of k in Ω;
– k ↪→ ki: inseparable closure of k in Ω;
– k ↪→ k: algebraic closure of k in Ω;
– Γk = Gal(ks|k) absolute Galois group of k.

- For any integers g, r ≥ 0, Γg,r is the group defined by the generators a1, . . . , ag, b1, . . . , bg, γ1, . . . , γr
with the single relation [a1, b1] · · · [ag, bg]γ1 · · · γr = 1.

- Given a category C and two objects X, Y in C, we will write HomC(X,Y ), MonoC(X,Y ),
EpiC(X,Y ), StrictEpiC(X,Y ), IsomC(X,Y ) for the morphisms, monomorphisms, epimorphisms,
strict epimorphisms and isomorphisms from X to Y in C respectively.
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1 Galois categories

1.1 Galois categories

Définition 1.1 A Galois category is a category C such that there exists a covariant functor F :
C → FSets satisfying the following axioms:

1. Finite projective limits exist in C (or, equivalently, C has a final object eC and finite fiber products
exist in C).

2. Finite inductive limits exist in C (or, equivalently, finite coproducts exist in C and categorical
quotients by finite groups of automorphisms exist in C). In particular, there is an initial object
∅C in C.

3. Any morphism u : Y → X in C factors as Y u′→ X ′
u′′→ X, where u′ is a strict epimorphism1 and

u′′ is a monomorphism which is an isomorphism onto a direct factor of X.2

4. F is left exact (in particular F commutes with finite projective limits).

5. F is right exact (in particular F commutes with finite coproducts and categorical quotients by
finite groups of automorphisms and sends strict epimorphisms to strict epimorphisms).

6. For any morphism u : Y → X in C, F (u) is an isomorphism if and only if u is an isomorphism.

Given a Galois category C, a functor F : C → FSets satisfying axioms (4), (5), (6) is called a fibre
functor for C. To any fibre functor F : C → FSets for C is associated the fundamental group of C with
base point F :

π1(C;F ) := AutFct(F ).

Also, to any two fibre functors Fi : C → FSets for C, i = 1, 2 is associated the set of paths from F1

to F2 in C:
π1(C;F1, F2) := IsomFct(F1, F2).

Example 1.2
1. For any field k, let FSAk denote the category of finite separable k-algebras. Then FSAk is separable with fibre

functors:
Fi := HomFSAk (−, Ω),

where i : k ↪→ Ω is an algebraically closed field extension. In that case:

π1(FSAk; Fi) = Γk.

1Recall that a morphism u : X → Y in C is a strict epimorphism if for any object Z in C, the map u◦ : homC(Y, Z) →
homC(X, Z) is injective and induces a bijection onto the set of all morphism v : X → Z in C such that f ◦ p1 = f ◦ p2,
where pi : X ×Y X → X denotes the ith projection, i = 1, 2.

2And, in that case, the decomposition Y
u′
→ X ′

u′′
→ X is unique in the sense that for any two such decompositions

Y
u′

i→ X ′i
u′′

i→ X = X ′i
‘

X ′′i , i = 1, 2 there exists an isomorphism ω : X ′1→̃X ′2 such that ω ◦ u′1 = u′2 and u′′2 ◦ ω = u′′1 .
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2. For any connected, locally arcwise connected and localy simply connected topological space B, let FRtop
B denote

the category of finite topological covers of B. Then FRtop
B is Galois with fibre functors:

Fb : FRtop
B → FSets

f : X → B → f−1(b)
, b ∈ B.

In that case:

π1(FRtop
B ; Fb) = ̂πtop1 (B, b)

(the profinite completion of the topological fundamental group of B with base point b).

3. For any profinite group Π, let C(Π) denote the category of finite (discrete) sets with continuous Π-action. Then
C(Π) is Galois with fibre functor the forgetful functor For : C(Π) → FSets. And, in that case:

π1(C(Π); For) = Π.

Example 1.2 (3) is actually the typical example of Galois categories. Indeed, the fundamen-
tal group π1(C, F ) is equipped with a natural structure of profinite group. A basis of open sub-
groups for the profinite topology is given by the kernels KX of the evaluation morphisms π1(C, F )→
AutFSets(F (X)), θ 7→ θ(X) for objects X in C.

By definition of this topology, a fibre functor F : C → FSets for C factors as:

C F //

F
��

FSets

C(π1(C, F ))
For

88ppppppppppp

Theorem 1.3 Let C be a Galois category. Then:

1. Any fibre functor F : C → FSets induces an equivalence of categories F : C → C(π1(C, F )).

2. For any fibre functors F1, F2 : C → FSets, π1(C;F1, F2) 6= ∅ and the profinite groups π1(C, F1)
and π1(C, F2) are isomorphic canonically up to inner automorphisms.

1.2 Proof of the main theorem

Let C be a Galois category and let F : C → FSets be a fibre functor for C.

1.2.1 Categorical lemmas

1.2.2 A few categorical lemmas

We gather here a few elementary categorical lemmas, which will be used below.

Lemma 1.4 Let C be a category which admits fibre products and u : X → Y be a morphism in C.
(1) u : X → Y is a monomorphism if and only if the first projection p1 : X ×Y X → Y is an isomor-
phism.
(2) If u : X → Y is both a monomorphism and a strict epimorphism then u : X → Y is an isomor-
phism.

Proof (1) Observe first that, by definition, p1◦∆X|Y = IdX so, if p1 : X×Y X → Y is an isomorphism,
its inverse is automatically ∆X|Y : X → X ×Y X. Assume first that u : X → Y is a monomorphism.
Then, from p1 ◦ u = p2 ◦ u, one deduces that p1 = p2. But, then, p1 ◦∆X|Y ◦ p1 = IdX ◦ p1 = p1 and
p2 ◦ ∆X|Y ◦ p1 = IdX ◦ p1 = p1 = p2 so, from the uniqueness in the universal property of the fiber
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product, one gets ∆X|Y ◦ p1 = IdX×YX . Conversely, assume that p1 : X ×Y X→̃Y is an isomorphism.
Then, for any morphisms f, g : W → X in C such that u ◦ f = u ◦ g there exists a unique morphism
(f, g) : W → X ×Y X such that p1 ◦ (f, g) = f and p2 ◦ (f, g) = g. From the former equality, one
obtains that (f, g) = ∆X|Y ◦ f and, from the latter, that g = p2 ◦ (f, g) = p2 ◦∆X|Y ◦ f = f .

(2) Since u : X → Y is a strict epimorphism, the map u◦ : homC(Y,X) → homC(Y, Y ) induces a
bijection onto the set of all morphisms v : Y → Y such that v ◦ p1 = v ◦ p2, where pi : X ×Y X → Y
is the ith projection, i = 1, 2. But since u : X → Y is also a monomorphism, the first projection
p1 : X ×Y X→̃X is an isomorphism with inverse ∆X|Y : X → X ×Y X. So ∆X|Y ◦ p1 = IdX×YX ,
which yields:

p2 ◦∆X|Y ◦ p1 = p2

= IdX ◦ p1 = p1.

Thus p1 = p2 and, using again that u : X → Y is a strict epimorphism, we get that there exists
v : Y → X such that u ◦ v = IdY . But, then, u ◦ v ◦ u = u = u ◦ IdX and, as u is a monomorphism
v ◦ u = IdX . �

Lemma 1.5 A Galois category C is artinian.

Proof. Let

· · ·
tn+1
↪→ Tn

tn
↪→ · · · t2↪→ T1

t1
↪→ T0

be a decreasing sequence of monomorphisms in C. By axiom (1), Tn+1
tn+1
↪→ Tn is a monomorphism

if and only if the first projection pr1 : Tn+1 ×Tn Tn+1→̃Tn+1 is an isomorphism, which implies, by
axiom (4), that the first projection pr1 : F (Tn+1) ×F (Tn) F (Tn+1))→̃F (Tn+1) is also an isomor-
phism or, equivalently, that F (tn+1) : F (Tn+1) ↪→ F (Tn) is a monomorphism. But since F (T0) is
finite, F (tn+1) : F (Tn+1) ↪→ F (Tn) is actually an isomorphism for n � 0 hence, by axiom (6),
tn+1 : Tn+1 ↪→ Tn is also an isomorphism for n� 0. �

Lemma 1.6 Let C be a Galois category with fiber functor F . Then, for any X0 ∈ C, F (X0) = ∅ if
and only if X0 = ∅C.

Proof. By definition of an initial object, for any X ∈ C |HomC(∅C , X)| = 1 so, we denote by
uX : ∅C → X the unique morphism from ∅C to X in C.

⇒ F (uX0) ∈ HomFsets(F (∅C), F (X0)) = HomFsets(F (∅C), ∅). But, for any E ∈ FSets, HomFsets(E, ∅) 6=
∅ if and only if F = ∅. Whence F (∅C) = ∅. but, then, F (uX0) = Id∅ is an isomorphism hence, by
axiom (6) so is uX0 .

⇐ for any object X ∈ C, one has a canonical isomorphism (uX , IdX) : ∅C
∐
X→̃X (with inverse the

canonical morphism iX : X→̃∅C
∐
X) thus F ((uX , IdX)) : F (∅C

∐
X)→̃F (X) is again an isomor-

phism. But, by axiom (5) F (∅C
∐
X) ' F (∅C)

∐
F (X), which forces |F (∅C)| = 0 hence F (∅C) = ∅. �

1.2.3 Strict pro-representability of F : C → FSets

The category Pro(C) associated with C is defined by:
- Objects: projective systems X = (φi,j : Xi → Xj)i,j∈I, i≥j in C.
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- Morphisms from X = (φi,j : Xi → Xj)i,j∈I, i≥j to X ′ = (φ′i,j : X ′i → X ′j)i,j∈I′, i≥j :

HomPro(C)(X,X
′) := lim

←−
i′∈I′

lim
−→
i∈I

HomC(Xi, X
′
i′).

Note that C can be regarded canonically as a full subcategory of Pro(C) and that F : C → FSets
canonically extends to a functor Pro(F ) : Pro(C)→ Pro(FSets).

The functor F : C → FSets is pro-representable in C if there exists X = (φi,j : Xi → Xj)i,j∈I, i≥j ∈
Pro(C) and a functor isomorphism:

θ : HomPro(C)(X,−)|C→̃F

and the functor F : C → FSets is strictly pro-representable in C if it is representable and if, in addition,
the transition morphisms φi,j : Xi � Xj are epimorphisms, i, j ∈ I, i ≥ j.

Proposition 1.7 The fibre functor F : C → FSets is strictly pro-representable in C by the projective
system X = (φm,n : Xm � Xn)m,n∈M, m≥n of connected objects in C.

Proof. The pointed category associated with C is the category Cpt defined by:
- Objects: pairs (X, ζ) with X ∈ C and ζ ∈ F (X).
- Morphisms from (X1, ζ1) to (X2, ζ2):

HomCpt((X1, ζ1), (X2, ζ2)) = {u : X1 → X2 ∈ HomC(X1, X2) | F (u)(ζ1) = ζ2}.

Let M = ”{(Xm, ζm)}m∈M” denote the set of objects (X, ζ) in Cpt with X connected in C. We
are going to show thatM is canonically equipped with a structure of projective systemM = (φm,n :
(Xm, ζm) � (Xn, ζn))m,n∈M, m≥n the transition morphisms of which are strict epimorphisms. This
will rely on the following:

Properties of connected objects:

1. For any X0 ∈ C, X0 ∈ C is connected if and only if for any ζ0 ∈ F (X0) and (X, ζ) ∈ Cpt

MonoCpt((X, ζ), (X0, ζ0)) = IsomCpt((X, ζ), (X0, ζ0))

(that is (X0, ζ0) is minimal in Cpt).

2. For any connected object X0 ∈ C and for any X ∈ C,
(i) |HomCpt((X0, ζ0), (X, ζ))| ≤ 1;
(ii) HomC(X,X0) = StrictEpiC(X,X0).

3. For any (Xi, ζi) ∈ Cpt, i = 1, 2 there exists (X0, ζ0) ∈M such that

HomCpt((X0, ζ0), (Xi, ζi)) 6= ∅, i = 1, 2.

Thus M will define a canonical functor morphism θ : HomPro(C)(M,−)|C → F by

θ(X) : HomPro(C)(M, X) → F (X)
u = (um : Xm → X)m∈M 7→ (F (um)(ζm))m∈M = F (um)(ζm), m >> 0.
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and it follows from property (3) that θ(X) is surjective and from property (2) (i) that θ(X) is injective
hence θ : HomPro(C)(M,−)|C→̃F is, actually, a functor isomorphism as claimed.

It remains to prove properties (1), (2), (3) of connected objects.

1. ⇒ Write X0 = X ′0
∐
X ′′0 . By axiom (5), ζ0 ∈ F (X0) = F (X ′0)

∐
F (X ′′0 ). Assume for instance

that ζ0 ∈ F (X ′0). Then the canonical inclusion i : X ′0 ↪→ X0 in C induces a monomorphism in
Cpt i : (X ′0, ζ0) ↪→ (X0, ζ0). Since i : X ′0 ↪→ X0 is a monomorphism and (X0, ζ0) is minimal,
i : X ′0 ↪→ X0 is necessarily an isomorphism hence X ′′0 = ∅.

⇐ For any ζ0 ∈ F (X0) and any (X, ζ) ∈ Cpt let i : (X, ζ) ↪→ (X0, ζ0) be a monomorphism in

C. Then, by axiom (3), i : X ↪→ X0 factors as X i′→ X ′0
i′′→ X0 = X ′0

∐
X ′′0 with i′ : X0 → X ′0

a strict epimorphism and i′′ : X ′0 → X0 a monomorphism inducing an isomorphism onto X ′0.
Since X0 is connected either X ′0 = ∅C or X ′′0 = ∅C . But X ′0 = ∅C is impossible since X0 6= ∅C
(ζ0 ∈ F (X0)). Hence X ′′0 = ∅C and i′′ : X ↪→ X0 is an isomorphism. But, then, i : X ↪→ X0 is
both a monomorphism and a strict epimorphism hence an isomorphism.

2. (i) For any morphisms ui : (X0, ζ0)→ (X, ζ) in Cpt, i = 1, 2, one has an exact sequence:

Ker(u1, u2)
i
↪→ X0 ⇒ X.

From axiom (4),

F (Ker(u1, u2))
F (i)
↪→ F (X0)⇒ F (X)

is again exact. Thus ζ0 ∈ Ker(F (u1), F (u2)) = F (Ker(u1, u2)) and F (i)(ζ0) = ζ0. It follows
then from the minimality of (X0, ζ0) that i : Ker(u1, u2) ↪→ X0 is actually an isomorphism that
is, u1 = u2.
(ii) By axiom (3), u : X → X0 factors as X u′→ X ′0

u′′→ X ′0
∐
X ′′0 = X0, where u′ is a strict

epimorphism and u′′ is a monomorphism inducing an isomorphism onto X ′0. Furthermore,
F (u)(ζ) = F (u′′)(F (u′)(ζ)) = ζ0 thus, by minimality of (X0, ζ0), u′′ : X ′0 ↪→ X0 is actually
an isomorphism.

3. Take X0 := X1 × X2, ζ0 := (ζ1, ζ2) ∈ F (X1) × F (X2) = F (X1 × X2) (by axiom (4)) and
ui := pri : X0 → Xi the ith projection, i = 1, 2. Then HomCpt((X0, ζ0), (Xi, ζi)) 6= ∅, i = 1, 2.
So, it is enough to prove that for any (X, ζ) ∈ Cpt there exists (X0, ζ0) ∈ M such that
HomCpt((X0, ζ0), (X, ζ)) 6= ∅.
If (X, ζ) ∈M then Id : (X, ζ)→ (X, ζ) works. Else, there exists (X1, ζ1) ∈ Cpt and a monomor-
phism u1 : (X1, ζ1) ↪→ (X, ζ) which is not an isomorphism in Cpt. If the claim were not true, one
could construct inductively an infinite sequence

(Xn+1, ζn+1)
un+1
↪→ (Xn, ζn)

un
↪→ . . .

u2
↪→ (X1, ζ1)

u1
↪→ (X, ζ),

with un : Xn ↪→ Xn−1 a monomorphism which is not an isomorphis in C. But this would con-
tradict lemma 1.5. �
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Lemma 1.8 For any connected object X0 in C:
(1) HomC(X0, X0) = AutC(X0);
(2) For any ζ0 ∈ F (X0), the evaluation map:

evζ0 : AutC(X0) ↪→ F (X0)
u : X0→̃X0 7→ F (u)(ζ0)

is injective.
(3) For any morphism u : X0 → X in C, if u : X0 � X is a strict epimorphism then X is also
connected.

Proof.

1. By axiom (3), any morphism u : X0 → X0 in C factors as X0
u′→ X ′0

u′′→ X0 = X ′0
∐
X ′′0 with

u′ : X0 → X ′0 a strict epimorphism and u′′ : X ′0 → X0 a monomorphism inducing an isomorphism
onto X ′0. But since X0 is connected either X ′0 = ∅C or X ′′0 = ∅C . The former implies X0 = ∅C
and then the claim is straightforward. The latter implies X0 = X ′′0 thus u′′ : X ′0 → X0 is
an isomorphism and u : X0 → X0 is a strict epimorphism. Hence F (u) : F (X0) � F (X0) is
surjective hence bijective since F (X0) is finite; The conclusion then follows from axiom (6).

2. For any automorphisms ui : X0→̃X0 in C, i = 1, 2 such that F (u1)(ζ0) = F (u2)(ζ0) = ζ,
ui : (X0, ζ0)→ (X, ζ) is a morphism in Cpt, i = 1, 2 hence, by property (2) (i) of the connected
objects X0, u1 = u2.

3. If not, there would exist a decomposition X = X ′
∐
X ′′ in C with X ′, X ′′ 6= ∅C . Fix ζ0 ∈ F (X0).

Then, by axiom (5), F (u)(ζ0) ∈ F (X) = F (X ′)
∐
F (X ′′). Assume, for instance, that ζ ′ =

F (u)(ζ0) ∈ F (X ′). Then, from property (3) of connected objects, there exist (X ′0, ζ
′
0) ∈ M and

a morphism v : (X ′0, ζ
′
0) → (X0 × X ′, (ζ0, ζ ′)) in Cpt. Then w := p1 ◦ v : (X ′0, ζ

′
0) → (X0, ζ0)

and w′ := p2 ◦ v : (X ′0, ζ
′
0) → (X ′, ζ ′) are morphisms in Cpt. But from property (2) (ii) of con-

nected object w : X ′0 → X0 is automatically a strict epimorphism, so is u ◦ w : X ′0 → X. Since
F (u ◦ w)(ζ0) = ζ ′ = F (w′)(ζ0), it follows from property (2) (i) of the connected object X0 that
u ◦ w = w′, which contradicts X ′′ 6= ∅C . �

Remark 1.9 For any X ∈ C, write F (X) = {ζ1, . . . , ζn}. Then, from property (3) of connected objects, there
exists (X0, ζ0) ∈ M such that HomCpt((X0, ζ0), (X, ζi)) 6= ∅, i = 1, . . . , n. Thus the canonical evalutation map evζ0 :
HomC(X0, X) ↪→ F (X), u : X0 → X 7→ F (u)(ζ0) is surjective. But, from property (2) (i) of connected objects, it is also
injective, hence bijective.

A connected object X0 in C is Galois in C if for any ζ0 ∈ F (X0) the evaluation map evζ0 :
AutC(X0) ↪→ F (X0), u : X0→̃X0 7→ F (u)(ζ0) is bijective. By lemma 1.8 (2), this is equivalent to one
of the following:

1. AutC(X0) acts transitively on F (X0);

2. AutC(X0) acts simply transitively on F (X0);

3. |AutC(X0)| = |F (X0)|.
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Denote by G ⊂M the subset of all (X0, ζ0) ∈M with X0 Galois.

Proposition 1.10 For any (X, ζ) ∈ Cpt there exists (X0, ζ0) ∈ G such that HomCpt((X0, ζ0), (X, ζ)) 6=
∅. (In other words, G is cofinal in M). In particular, the fibre functor F : C → FSets is strictly
pro-representable in C by the projective system X = (φg,h : Xg � Xh)g,h∈G, g≥h of Galois objects in C.

Proof. Fix first (X0, ζ0) ∈M such that the canonical evaluation map evζ0 : HomC(X0, X)→̃F (X), u :
X0 → X 7→ F (u)(ζ0) is bijective. Write HomC(X0, X) = {u1, . . . , un}, ζi := F (ui)(ζ0) and pri : Xn →
X for the ith projection. Consider the diagonal morphism:

π: X0 → Xn

x0 7→ (u1(x0), . . . , un(x0))
.

Then, by definition, pri ◦ π = ui, i = 1, . . . , n.
By axiom (3), π : X0 → Xn factors as X0

π′→ G′
π′′→ Xn = G′

∐
G′′ with π′ a strict epimorphism in

C and π′′ a monomorphism inducing an isomorphism onto the direct factor G′ of Xn in C. We claim
that G′ is Galois. The conclusion will then follow from the fact that pri ◦ π′′ : (G′, ζ0) → (X, ζi) is a
morphism in Cpt, i = 1, . . . , n.

From lemma 1.8 (3), G′ is connected in C. Set γ′0 := F (π′)(ζ0) ∈ F (G′). Then we are to prove
that the canonical evaluation map evγ′0 : AutC(G′) → F (G′), ω : G′→̃G′ 7→ F (ω)(γ′0) is surjec-
tive or, in other words, for any γ′ ∈ F (G′), we are to find an automorphism ω : G′→̃G′ such
that F (ω)(γ′0) = γ′. From property (3) of connected objects, there exists (X̃0, ζ̃0) ∈ M such that
HomCpt((X̃0, ζ̃0), (X0, ζ0)) 6= ∅ and HomCpt((X̃0, ζ̃0), (G′, γ′)) 6= ∅. So, up to replacing (X0, ζ0) with
(X̃0, ζ̃0), we may also assume that there exists a morphism ρ : (X0, ζ0)→ (G′, γ′) in Cpt. But, on the
one hand F (ω ◦ π′)(ζ0) = F (ω)(γ′0) and, on the other hand, γ′ = F (ρ)(ζ0). Thus, by property (2) (i)
of the connected object X0, F (ω)(γ′0) = γ′ if and only if ω ◦ π′ = ρ.

By construction, F (ui)(ζ0) 6= F (uj)(ζ0), 1 ≤ i 6= j ≤ n hence, by property (2) (i) of the con-
nected object X0, ui 6= uj , 1 ≤ i 6= j ≤ n. Since π′ : X0 → G′ is a strict epimorphism, we
thus have pri ◦ π′′ 6= prj ◦ π′′, 1 ≤ i 6= j ≤ n. But since X0 is connected, ρ : X0 → G′ is
automatically a strict epimorphism hence pri ◦ π′′ ◦ ρ 6= prj ◦ π′′ ◦ ρ, 1 ≤ i 6= j ≤ n. Even-
tually, since G′ is connected F (pri ◦ π′′ ◦ ρ)(ζ0) 6= F (prj ◦ π′′ ◦ ρ)(ζ0), 1 ≤ i 6= j ≤ n, whence
{F (ui)(ζ0)}1≤i≤n = F (X) = {F (pri ◦ π′′ ◦ ρ)(ζ0)}1≤i≤n. From which it follows that there exists a
permutation σ ∈ Sn such that F (pri ◦ π′′ ◦ ρ)(ζ0) = F (prσ(i) ◦ π′′ ◦ π′)(ζ0) and, in turn, σ defines an
isomorphism σ : Xn→̃Xn (by permuting coordinates) such that σ ◦ π′′ ◦ π′ = π′′ ◦ ρ. But, then, from
the unicity of the decomposition in axiom (3), there exists an automorphism ω : G′→̃G′ satisfying
σ ◦ π′′ = π′′ ◦ ω and ω ◦ π′ = ρ. �

Remark 1.11 Actually, for any object X ∈ C there exists (X0, ζ0) ∈ G such that the canonical evaluation morphism
evζ0 : HomC(X0, X)→̃F (X), u : X → X0 7→ F (u)(ζ0) is bijective.

Corresponding to the projective system (φg,h : Xg � Xh)g,h∈G, g≥h in Pro(C), one has a projective
system (F (φg,h) : F (Xg)� F (Xh))g,h∈G, g≥h in Pro(FSets).

For any g ∈ G, set Gg := AutC(Xg).Then for any g, h ∈ G, g ≥ h, the map

ψg,h : Gg
evζg
→̃ F (Xg)

F (φg,h)
� F (Xh)

ev−1
ζh

→̃ Gh
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is the unique map ψg,h : Gg → Gh making the following diagrams commute:

Xg
u //

φg,h
��

Xg

φg,h
��

Xh
ψg,h(u)

// Xh

, u ∈ Gg

and, in particular, is a group epimorphism. This endows the Gg, g ∈ G with a structure of projective
system (ψg,h : Gg � Gh)g, h∈G, g≥h. Set G := lim

←−
Gg. With these notation one gets the canonical

isomorphism of profinite sets:

ev
(2)
ζ : G →̃ lim

←−
F (Xg)

(ug : Xg→̃Xg)g∈G 7→ (F (ug)(ζg))g∈G .

On the other hand, one can then define a map of profinite sets:

ev
(1)
ζ : π1(C;F ) → lim

←−
F (Xg)

Θ 7→ (Θ(Xg)(ζg))g∈G .

Lemma 1.12 The map ev(1)
ζ : π1(C;F )→ lim

←−
F (Xg) is an isomorphism of profinite sets.

Proof. Let Θ,Θ′ ∈ π1(C;F ) such that Θ(Xg)(ζg) = Θ′(Xg)(ζg), g ∈ G. Then, for any X ∈ C,
there exists g ∈ G such that the canonical evaluation morphism evζg : HomC(Xg, X)→̃F (X), u :

X → Xg 7→ F (u)(ζg) is bijective. But Θ(X)(F (u)(ζg))
(∗)
= F (u)Θ(Xg)(ζg)

(∗∗)
= F (u)Θ′(Xg)(ζg)

(∗)
=

Θ′(X)(F (u)(ζg)), where the equalities (∗) are just the definition of a functor morphism and the equality
(∗∗) is the assumption that Θ(Xg)(ζg) = Θ′(Xg)(ζg). So Θ(X) = Θ′(X), whence the injectivity.

For any (ηg)g∈G ∈ lim
←−

F (Xg) there exists a unique (ug)g∈G ∈ G such that F (ug)(ζg) = ηg, g ∈ G.
Then, using the canonical isomorphism evζg : Gg→̃F (Xg), define Θ(Xg)(F (u)(ζg)) := F (u ◦ ug)(ζg),
u ∈ Gg. Then the maps Θ(Xg) : F (Xg)→̃F (Xg), g ∈ G are well-defined isomorphisms and, for any
g, h ∈ G, for any morphism φ : Xg → Xh in C, writing φ = α ◦ φg,h with α ∈ Gh, one gets:

Θ(Xh)F (α ◦ φg,h)(F (u)(ζg)) = Θ(Xh)F (α ◦ φg,h ◦ u)(ζg)
= Θ(Xh)F (α ◦ ψg,h(u) ◦ φg,h(ζg)
= Θ(Xh)F (α ◦ ψg,h(u))(ζh)
= F (α ◦ ψg,h(u) ◦ uh)(ζh)
= F (α ◦ ψg,h(u))(ηh)

whereas:

F (α ◦ φg,h) ◦Θ(Xh)(F (u)(ζg)) = F (α ◦ φg,h)(F (u ◦ ug)(ζg))
= F (α ◦ φg,h ◦ u)(ηg)
= F (α ◦ ψg,h(u) ◦ φg,h)(ηg)
= F (α ◦ ψg,h(u))(ηh),

That is Θ(Xh) ◦ F (φ) = F (φ) ◦Θ(Xh). Using again proposition 1.10, for any X ∈ C, there exists
g ∈ G such that the canonical evaluation morphism evζg : HomC(Xg, X)→̃F (X), φ : X → Xg 7→
F (φ)(ζg) is bijective. Then, set Θ(X)(F (φ)(ζg)) = F (φ ◦ ug), φ : Xg → X ∈ HomC(Xg, X) and check
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that this defines an element Θ ∈ π1(C;F ) such that ev(1)
ζ (Θ) = (ηg)g∈G .

Eventually, ev(1)
ζ : π1(C;F ) → lim

←−
F (Xg) is an homeomorphism since ev(1)

ζ (KXg) is the inverse

image of ζg via the canonical projection lim
←−

F (Xg)→ F (Xg), g ∈ G. �

Thus, we have built a canonical isomorphism of profinite sets:

cζ : ev(2) −1
ζ ◦ ev(1)

ζ : π1(C;F )→̃G

Since for any Θ, Θ′ ∈ π1(C;F ),

F (cζ(Θ′)cζ(Θ))(ζg) = F (cζ(Θ′))F (cζ(Θ))(ζg)
= F (cζ(Θ′))Θ(Xg)(ζg)
= Θ(Xg)F (cζ(Θ′))(ζg)
= Θ(Xg)Θ′(Xg)(ζg)
= F (cζ(Θ ◦Θ′)(ζg)

cζ actually induces a profinite group isomorphism:

cζ : π1(C;F )→̃Gop.

We are going to use this description of π1(C;F ) to construct a pseudo-inverse to F : C →
C(π1(C;F )).

1.2.4 Pseudo-inverse to F : C → C(π1(C;F ))

From now on, write Π := π1(C;F ) and Πg := Gopg , g ∈ G.

Proposition 1.13 For any object E in C(Π), there exists an object G(E) in C and an isomorphism
γE : E→̃FG(E) in C(Π) such that for any object X in C the map

ω(X) : HomC(G(E), X) → HomC(Π)(E,F (X))
u : G(E)→ X 7→ F (u) ◦ γE : E → F (X)

is bijective. Furthermore, this construction is functorial and defines a pseudo-inverse G : C(Π) → C
to F : C → C(Π).

Proof.

1. Definition of G(E) and γE : E→̃F (G(E)). First observe that it is enough to define G(E) for
connected objects E in C(Π). Indeed, if

E =
∐

E0∈π0(E)

E0

is the decomposition of any object E in C(Π) into connected components then

G(E) =
∐

E0∈π0(E)

G(E0)
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works by axioms (2) and (5).
So let E be a connected object in C(Π) and fix ε ∈ E. Then there exists g ∈ G such that the
continuous surjective map evε : Π� E, σ 7→ σ · ε factors through

Π

����

evε // // E

Πg

evε

>> >>~~~~~~~

and this induces an isomorphism evε : Πg/StabΠg(ε)→̃E in C(Π). We set

G(E) := Xg/(StabΠg(ε))
op.

Then, we have the following canonical isomorphisms in C(Π):

F (G(E)) →̃ F (Xg)/(StabΠg(ε))op (by axiom (5))
ev−1
ζg

→̃ Gg/(StabΠg(ε))op

→̃ Πg/StabΠg(ε)
evε
→̃ E,

(1)

which define γ−1
E . The above definitions of G(E) and γE : E→̃F (G(E)) do not depend on

g ∈ G up to isomorphisms in C. Indeed, for any g′ ∈ G, g′ ≥ g, the canonical morphism
Xg′/(StabΠg′ (ε))

op → Xg/(StabΠg(ε))op in C induces, by axiom (5) and the above, a bijection
F (Xg′)/(StabΠg′ (ε))

op→̃(E→̃)F (Xg)/(StabΠg(ε))op hence, by axiom (6), is already an isomor-
phism in C.

2. For any object X in C, the map ω(X) is bijective.

(a) ω(X) is injective. Indeed, for any two morphisms u1, u2 : G(E)→ X in C such that

ω(X)(u1) = γE ◦ F (u1)
= ω(X)(u2) = γE ◦ F (u2)

F (u1) = F (u2) so the canonical map:

Ker(F (u1), F (u2))→̃F (G(E))

is an isomorphism hence, by axioms (5) and (6), so is:

Ker(u1, u2)→̃G(E)

whence u1 = u2 : G(E)⇒ X.

(b) ω(X) is surjective. Fix ε ∈ E and for any morphism α : E → F (X) in C(Π) set ζ := α(ε) ∈
F (X). Then one can always find g ∈ G and a morphism u : (Xg, ζg) → (X, ζ) in Cpt such
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that, in addition, the action of Π on E factors through Πg. But u : Xg → X also factors
through

Xg
u //

��

X,

Xg/(StabΠg(u))op
u

77pppppppppppp

where (StabΠg(u))op ⊂ Gg is the subgroup of all σ ∈ Gg such that u ◦ σ = u. Since
α : E → F (X) is a morphism in C(Π), for any σ ∈ Πg, σ · ε = ε implies that σ · ζ = ζ but
ζ = F (u)(ζg), whence F (u◦σ)(ζg) = σ · ζ = ζ = F (u)(ζg). Thus, by minimality of (Xg, ζg),
u ◦ σ = u. So (StabΠg(ε))op ⊂ (StabΠi(u))

op. This yields a canonical morphism

uα : G(E) = Xg/(StabΠg(ε))
op → Xg/(StabΠg(u))

op u→ X.

It remains to check that F (uα)◦γE = α. As both F (uα)◦γE ans α are Πg-equivariant and as
Πg acts transitively on E, it is enough to prove that F (uα) ◦ γE(ε) = α(ε) = ζ = F (u)(ζg).
Using (1), one has: γE(ε) = F (p)(ζg), where p : Xg → Xg/(StabΠg(ε))op denotes the
quotient morphism in C. As a result:

F (uα) ◦ γE(ε) = F (uα ◦ p)(ζg) = F (u)(ζg).

3. Functoriality. For any morphism α : E → E′ in C(Π), γ′E◦α : E → F (G(E′)) is again a morphism
in C(Π) hence, since ω(G(E′)) is bijective, there exist a unique morphism G(α) : G(E)→ G(E′)

in C such that γE′ ◦α = G(α) ◦ γE . Then, for any sequence E α→ E′
α′→ E′′ of morphism in C(Π)

one has G(α′ ◦ α) ◦ γE = γE′′ ◦ α′ ◦ α and G(α′) ◦ G(α) ◦ γE = G(α′) ◦ γE′ ◦ α = γE′′ ◦ α′ ◦ α,
whence, by unicity, G(α′ ◦ α) = G(α′) ◦ G(α). That is, G : C(Π) → C is a functor. One then
checks that γ : IdC(Π)→̃F ◦ G is a functor isomorphism. Similarly, for any object X in C, set
δX := ω(F (X))−1(IdF (X)) : G(F (X))→̃X then, δ : G ◦ F→̃IdC is also a functor isomorphism.
Furthermore, it follows from the definitions that for any objects E in C(Π) and X in C one has:

γF (X) ◦ F (δX) = IdF (X) and δG(E) ◦G(γE) = IdG(E). �

1.2.5 Unicity

Proposition 1.14 Let C be a Galois category and F, F ′ : C → FSets two fibre functors defining profi-
nite groups Π := π1(C;F ) and Π′ := π1(C;F ′) associated with universal coverings (φg,h : (Xg, ζg) →
(Xh, ζh))g,h∈G, g≥h and (φ′g′,h′ : (X ′g′ , ζ

′
g′)→ (X ′h′ , ζ

′
h′))g,h∈G′, g′≥h′ respectively. Then there is a profinite

group isomorphism Π→̃Π′ canonical up to inner automorphisms.

Proof. From proposition 1.13, one may assume that C is C(Π), F : C → FSets is the forgetful functor
For : C(Π) → FSets and (φg,h : (Xg, ζg) → (Xh, ζh))g,h∈G, g≥h is the projective system induced
by the normal open subgroups of Π pointed by the identity element 1 i.e. (φN,M : (Π/N, 1) →
(Π/M, 1))N<M, N, M normal open subgroups in Π. For each g′ ∈ G′ let αg′ : Π → F ′(X ′g′) be the morphism
of Pro(C(Π)) defined by αg′(1) = ζ ′g′ . Since X ′g′ is connected, αg′ : Π → F ′(X ′g′) is an epimorphism
in Pro(C(Π)) hence so is α := lim

←−
αg′ : Π � lim

←−
F ′(X ′g′). Write ζ ′ := (ζ ′g′)g′∈G′ ∈ lim

←−
F ′(X ′g′). Then
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StabΠ(ζ ′) ⊂ Π is a closed subgroup such that α : Π→ lim
←−

F ′(X ′g′) factors through an isomorphism in

Pro(C(Π)):

Π
α // //

����

lim
←−

F ′(X ′g′).

Π/StabΠ(ζ ′)
* 
 α

77 77ooooooooooo

The functor isomorphism HomPro(C(Π))(lim←− F ′(X ′g′),−)→̃HomPro(C(Π))(Π/StabΠ(ζ ′),−), u 7→ u ◦ α

thus identifies F ′ with the functor X 7→ XStabΠ(ζ′). In particular, since F ′(X) = ∅ if and only if X = ∅
and since for any normal open subgroup N C Π, Π/N 6= ∅, one gets F ′(Π/N) = Π/NStabΠ(ζ′) 6= ∅.
Hence lim

←−
Π/NStabΠ(ζ′) = ΠStabΠ(ζ′) 6= ∅, which forces StabΠ(ζ ′) = 1. As a result, α : Π→̃lim

←−
F ′(X ′g′)

is an isomorphism in Pro(C(Π)) and one gets a profinite group isomorphism:

Φα : Π′op = AutPro(C(Π))(X ′) →̃ AutPro(C(Π))(Π) = Πop

σ 7→ α−1σα.

Furthermore α (hence Φα is uniquely determined by ζ ′ and replacing ζ ′ by ζ ′′ amounts to replacing
α by α′ and Φα by (α−1α′)−1Φα(−)(α−1α′) (with α−1α′ ∈ Πop). �

1.3 Fundamental functors and functoriality

Let C be a Galois category. Then, given a fibre functor F : C → FSets, we fix a universal covering
(φF,g,h : (XF,g, ζF,g)→ (XF,h, ζF,h))g, h∈GF , g≥h for F : C → FSets.

1.3.1 Fundamental functors

Proposition 1.15 Given Galois categories C, C′ and a covariant functor H : C → C′, the following
assertions are equivalent.
(i) There exists a fibre functor F ′ : C′ → FSets for C′ such that F ′ ◦H : C → FSets is a fibre functor
for C.
(ii) For all fibre functor F ′ : C′ → FSets for C′, F ′ ◦H : C → FSets is a fibre functor for C.
(iii) H : C → C′ is exact (that is is left exact and right exact).

Proof. Let us show that (iii)⇒ (ii)⇒ (i)⇒ (iii). The implication (ii)⇒ (i) is straightforward.
(i)⇒ (iii). One has to prove that H commutes with kernels and cokernels. So, let u1, u2 : X ⇒ Y

be morphisms in C and let F ′ : C′ → FSets be a fibre functor for C′ such that F ′ ◦H : C → FSets is
a fibre functor for C. Since F ′ ◦H commutes with kernels, the sequence

F ′ ◦H(ker(u1, u2))
F ′◦H(i)→ F ′ ◦H(X)

F ′◦H(u1),F ′◦H(u2)

⇒ F ′ ◦H(Y ) (∗)
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is exact is FSets. On the other hand, H(u1) ◦H(i) = H(u2) ◦H(i), whence a canonical factorization
in C′:

ker(H(u1),H(u2)) // H(X)
H(u1),H(u2)// H(Y )

H(ker(u1, u2))

H(i)

OO
ν

ii
(∗∗)

But, in view of (∗) applying F ′ to (∗∗), one gets that F ′(ν) is an isomorphism in Fsets hence, by
axiom (6), ν : H(ker(u1, u2))→̃ker(H(u1),H(u2)) is an isomorphism in C′. The same argument shows
that H : C → C′ commutes with cokernels.

(iii)⇒ (ii). Assume now that H : C → C′ is exact and let F ′ : C′ → FSets be a fibre functor for C′.
Then F ′◦H : C → FSets is again exact. So it only remains to check axiom (6) for F ′◦H : C → FSets.
This will follow from the fact that, if X 6= ∅C then H(X) 6= ∅C′ . Indeed, in general, X 6= ∅C if and
only if the canonical morphism vX : X → eC is an epimorphism. But as H : C → C′ is right exact, it
transforms epimorphisms into epimorphisms and as it is left exact it transforms eC into eC′ . Now, let
u : X → Y be a morphism in C such that F ′ ◦ H(u) : F ′ ◦ H(X)→̃F ′ ◦ H(Y ) is an isomorphism in
FSets. Hence, by axioms (6) applied to F ′ : C′ → FSets, H(u) : H(X)→̃H(Y ) is an isomorphism in

C. From axiom (3), u factors as u : X u′→ Y ′
u′′→ Y = Y ′

∐
Y ′′ with u′ a strict epimorphism and u′′ a

monomorphism inducing an isomorphism onto the direct factor Y ′ of Y . Since H : C → C′ is exact, the

factorization H(u) : H(X)
H(u′)→ H(Y ′)

H(u′′)→ H(Y ) = H(Y ′)
∐
H(Y ′′) is again the one given by axiom

(3) for H(u) in C′. In particular H(Y ′′) = ∅C′ hence Y ′′ = ∅C and u : X → Y is a strict epimorphism.
Assume it is not a monomorphism. Then there exists two distinct morphisms in C ui : W → X,
i = 1, 2 such that u1 ◦ u = u2 ◦ u. Since H(u1) ◦ H(u) = H(u1 ◦ u) = H(u2 ◦ u) = H(u2) ◦ H(u)
and H(u) : H(X)→̃H(Y ) is an isomorphism, H(u1) = H(u2) hence ker(H(u1),H(u2)) = H(X).
But, as well, ker(H(u1),H(u2)) = H(ker(u1, u2)). So, if i : ker(u1, u2) ↪→ X denotes the canoni-
cal monomorphism, H(i) : H(ker(u1, u2))→̃H(X) is an isomorphism hence, by the argument above,
i : ker(u1, u2) ↪→ X is also a strict epimorphism thus, by lemma 1.4 (ii), an isomorphism, which
contradicts the fact that u1 and u2 are distinct. So u : X → Y is also a monomorphism hence an
isomorphism. �

A functor H : C → C′ satisfying properties (i), (ii), (iii) of proposition 1.15 is called a Fundamental
functor from C to C′.

Let u : Π′ → Π be a profinite groups morphism. Then any E ∈ C(Π) can be endowed with a
continuous action of Π′ via u : Π′ → Π, which defines a canonical fundamental functor:

Hu : C(Π)→ C(Π′).

Conversely, let H : C → C′ be a fundamental functor. Let F ′ : C′ → FSets be a fibre functor for C′,
F := F ′ ◦H : C → FSets and set Π := π1(C;F ), Π′ := π1(C′;F ′). Then for any Θ′ ∈ Π′, Θ′ ◦H ∈ Π,
which defines a canonical group morphism:

uH : Π′ → Π,

which is continuous since for any X ∈ C, u−1
H (KX) = KH(X). And one immediately checks that:

uHu = u : Π′ ⇒ Π
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and that the following diagram commutes:

C(Π)
HuH // C(Π′)

C

F

OO

H
// C′.

F ′

OO

Thus a functor H : C → C′ is a fundamental functor if and only if there exists a profinite groups
morphism u : Π′ → Π such that the following diagram commutes:

C(Π)
Hu // C(Π′)

C

F

OO

H
// C′.

F ′

OO

In the next §, we are going to compare the properties of the fundamental functor H : C → C′ and
of the corresponding profinite group morphism u : Π′ → Π.

Example 1.16
1. Any field extension φ : k → k′ defines a canonical functor

H : FSAk → FSAk′

k ↪→ A 7→ k′ ↪→ A⊗k,φ k′.

and for any algebraically closed field extension i′ : k′ ↪→ Ω, one has:

Fi′ ◦H = HomFSAk′ (−⊗k,φ k′, Ω)
(∗)
= HomFSAk (−, Ω) = Fi′◦φ,

where the equality (*) comes from the universal property of tensor product. Hence H : FSAk → FSAk′ is a
fundamental functor. In that case, the corresponding profinite groups morphism is just the restriction morphism:

|ks : Γk′ → Γk.

2. Any continuous map φ : B′ → B of connected, locally arcwise connected and locally simply connected topological
spaces defines a canonical functor:

H : FRtop
B → FRtop

B′

f : X → B 7→ p2 : X ×f,B,φ B′ → B′.

and for any b′ ∈ B′, one has:

Fb′ ◦H(f) = p−1
2 (b′)

= {(x, b′) | x ∈ X such that f(x) = φ(b′)}
= f−1(φ(b′)).

Hence H : FRB → FRB′ is a fundamental functor. In that case, the corresponding profinite groups morphism is
just the canonical morphism:

φ̂ : ̂πtop1 (B′, b′) → ̂πtop1 (B, φ(b′))

induced from φ : πtop1 (B′, b′) → πtop1 (B, φ(b′)).

21



1.3.2 Functoriality

Lemma 1.17 With the above notation:

1. For any open subgroup S ⊂ Π, Im(u)) ⊂ S (resp. NorΠ(Im(u)) ⊂ S) if and only if
HomCpt((eC , ∗), (H(Π/S), 1)) 6= ∅ (resp. H(Π/S) is totally split in C). In particular, u : Π′ → Π
is trivial if and only if for any object X in C, H(X) is totally split in C′.

2. For any open subgroup S′ ⊂ Π′, Ker(u) ⊂ S′ if and only if there exists an open subgroup
S ⊂ Π such that HomCpt((H(Π/S), 1)0, (Π′/S′, 1)) 6= ∅(where, for any (X, ζ) ∈ Cpt, (X, ζ)0 =
(X0, ζ), where X0 denotes the connected component of ζ in X). If u : Π′ � Π is an epi-
morphism, then Ker(u) ⊂ S′ if and only if there exists an open subgroup S ⊂ Π such that
IsomCpt((H(Π/S), 1)0, (Π′/S′, 1)) 6= ∅. In particular, u : Π′ ↪→ Π is a monomorphism if and
only if for any connected object X ′ ∈ C′ there exists a connected object X ∈ C and a connected
component H(X)0 of H(X) in C such that IsomC′((H(X)0, X ′) 6= ∅. If, furthermore, u : Π′ � Π
is an epimorphism, then u : Π′ � Π is an isomorphism if and only if H : C → C′ is essentially
surjective.

Proof. Recall that, given a profinite group Π, a closed subgroup S ⊂ Π is the intersection of all
open subgroup U ⊂ Π containing S thus, in particular, {e} is the intersection of all open subgroups
of Π. This yields the characterization of trivial morphisms and monomorphisms from the preceding
assertions in (1) and (2).

For the first assertion of (1), if Im(u) ⊂ S then for any Θ′ ∈ Π′ Θ′·S = u(Θ′)S = S hence the canon-
ical inlcusion Π′/Π′ ↪→ H(Π/S) = Π′/u−1(S) in C(Π′) induces a morphim (Π′/Π′, 1) ↪→ (H(Π/S), 1)
in C′pt. Conversely, if HomCpt((eC , ∗), (H(Π/S), 1)) 6= ∅ then let u : (Π′/Π′, 1) → (H(Π/S), 1) in C′pt.
For any Θ′ ∈ Π′, one has Θ′ · 1 = Θ′ · u(1) = u(Θ′) = 1 so Im(u)) ⊂ S.

For (2), if Ker(u) ⊂ S′ then one has a canonical isomorphism (Π′/S′, 1)→̃(Im(u)/u(S′), 1) in
C′pt. In particular, since both Π′ and S′ are compact, u(S′) ⊂ Im(u) is a closed subgroup of finite
index in Im(u) hence is also open in Im(u) and there exists an open subgroup S ⊂ Π such that
S ∩ Im(u) ⊂ u(S′). By definition, the connected component of 1 in H(Π/S) in C′ is Im(u)S/S '
Im(u)/S ∩ Im(u) ' Π′/u−1(S). But u−1(S) = u−1(S ∩ Im(u)) ⊂ S′, whence a canonical mor-
phism (Im(u)S/S, 1) → (Π′/S′, 1) in C′pt. Conversely, assume that there exists an open subgroup
S ⊂ Π and a morphism (Im(u)S/S, 1) → (Π′/S′, 1) in C′pt then, by definition of pointed morphisms,
Ker(u) ⊂ u−1(S) ⊂ S′. If Im(u) = Π, one can take S = u(S′). Eventually, note that since Ker(u) C Π′

is normal in Π′, the condition Ker(u) ⊂ S′ does not depend on the choice of ζ ∈ F (X) defining the
isomorphism X ′→̃Π′/S′. �

Proposition 1.18

1. The following three assertions are equivalent:
(i) u : Π′ � Π is an epimorphism;
(ii) H : C → C′ sends connected objects to connected objects;
(iii) H : C → C′ is fully faithful.

2. u : Π′ ↪→ Π is a monomorphism if and only if for any object X ′ in C′ there exists an object X
in C and a connected component X ′0 of H(X) such that HomC′(X ′0, X

′) 6= ∅.
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3. u : Π′→̃Π is an isomorphism if and only if H : C ≈ C′ is an equivalence of categories.

4. If C H→ C′ H
′
→ C′′ is a sequence of fundamental functors of Galois categories with corresponding

sequence of profinite groups Π u← Π′ u
′
← Π′′. Then,

- Ker(u) ⊂ Im(u′) if and only if for any object X in C H ′(H(X)) is totally split in C′′;
- Ker(u) ⊃ Im(u′) if and only if for any connected object X ′ in C′ such that H ′(X ′) admits
a section, there exists an object X in C and a connected component X ′0 of H(X) such that
HomC′(X ′0, X

′) 6= ∅.

Proof. Assertion (2) follows from lemma 1.17. Assertions (3) and (4) follow from lemma 1.17 and (1).
So we are only to prove (1).
(i) ⇒ (ii). Assume that u : Π′ � Π is an epimorphism. Then, for any connected object X in C(Π), Π
acts transitively on X. But H(X) is just X equipped with the Π′-action σ′ · x = u(σ′) · x. Hence Π′

acts transitively on Hu(X) as well or, equivalently, H(X) is connected.
(ii) ⇒ (i). Assume that for any connected object X in C(Π) Hu(X) is again connected in C(Π′). This
holds, in particular, for any finite quotient Π/N of Π (with N C Π a normal open subgroup) that is,

the canonical morphism uN : Π′ u→ Π
prN
� Π/N is a continuous epimorphism hence so is u = lim

←−
uN .

(i) ⇔ (iii) is straightforward. �

Given a Galois category C with fibre functor F : C → FSets and X ∈ C connected, let CX denote
the category of X-objects that is the category defined by:
- Objects: Morphism f : Y → X in C;
- Morphisms from f ′ : Y ′ → X to f : Y → X:

HomCX (f ′, f) = {φ : Y ′ → Y ∈ HomC(Y ′, Y ) | f ◦ φ = f ′}.

And for any ζ ∈ F (X), set

F(X,ζ) : CX → FSets

f : Y → X 7→ F (f)−1(ζ).

Proposition 1.19 CX is Galois with fibre functors F(X,ζ) : CX → FSets, ζ ∈ F (X). Furthermore,
the canonical functor

H : C → CX
Y 7→ p2 : Y ×X → X

satisfies, for any ζ ∈ F (X) F(X,ζ)◦H = F and induces a profinite group monomorphism: π1(CX ;F(X,ζ)) ↪→
π1(C;F ) with image Stabπ1(C;F )(ζ).

Proof. Just observe that if (φF,g,h : (XF,g, ζF,i) → (XF,h, ζF,h))g, h∈GF , g≥h is a universal covering
for F then with GF(X,ζ)

⊂ GF the set of all g ∈ GF such that HomCpt((Xg, ζg), (X, ζ)) 6= ∅ de-
fines a universal covering (φF,g,h : (XF,g, ζF,g) → (XF,h, ζF,h))g, h∈GF(X,ζ)

, g≥h for F(X,ζ). Further-
more, for any g ∈ GF(X,ζ)

, identify as usual (XF,g, ζF,g) → (X, ζ) with the canonical morphism
π1(C, F )/Stabπ1(C,F )(ζF,g)→ π1(C, F )/Stabπ1(C,F )(ζ) and, thus, F(X,ζ)(XF,g) with Stabπ1(C,F )(ζ)/Stabπ1(C,F )(ζF,g).
Through the above identification, π1(CX , F(X,ζ)) = lim

←−
F(X,ζ)(XF,g) = lim

←−
Stabπ1(C,F )(ζ)/Stabπ1(C,F )(ζF,g) =

Stabπ1(C,F )(ζ). Also, F(X,ζ) ◦H ' F thus H : C → CX is exact and uH : π1(CX , F(X,ζ)) → π1(C, F ) is
nothing but the canonical inclusion Stabπ1(C,F )(ζ) ↪→ π1(C, F ). �
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2 Examples

2.1 Topological covers

The formalism of Galois categories is derived from what occurs for topological covers. In the following,
all the topological spaces will be assumed to be separated.

Recall that the topological fundamental group of X based at x ∈ X is the group πtop1 (X,x) of ho-
motopy (with x fixed) classes of closed paths based at x. If X is arcwise connected then, given
two points x0, x1 ∈ X, any path c : [0, 1] → X from x0 to x1 defines a group isomorphism
πtop1 (X,x0)→̃πtop1 (X,x1), [γ] 7→ [c][γ][c]−1.

Example 2.1 Topological groups can sometimes be computed explicitly.

1. If X is a compact Riemann surface with genus g menus r points then πtop1 (X, x) = Γg,r, where Γg,r is the group
with generators γ1, . . . , γr, u1, . . . , ug, v1, . . . , vg and single relation

γ1 · · · γr[u1, v1] · · · [ug, vg] = 1.

Note in particular that the only cases when πtop1 (X, x) is abelian are for (g, r) = (0, 0), (0, 1), (0, 2), (1, 0). These
are special cases of example (3) below.

2. If X = Ur is the configuration space for r unordered points on the projective line then πtop1 (X, x) = Hr is the
so-called Hurwitz braid group given by the generators Q1, ..., Qr−1 and defining relations

(1) QiQi+1Qi = Qi+1QiQi+1 for i = 1, ..., r − 2
(2) QiQj = QjQi for i, j = 1, ..., r − 1 with |j − i| > 1
(3) Q1Q2 · · ·Qr−1Qr−1 · · ·Q2Q1 = 1

3. If X is a topological group then πtop1 (X, x) is abelian.

An arcwise connected topological space with trivial topological fundamental group is said to be simply
connected.

Given a topological space X, let RtopX denote the category of topological covers of X and, for
any x ∈ X, let Rtop(X,x) denote the associated pointed category. Also, write Fx : RtopX → Sets for the

functor sending p : Y → X ∈ RtopX to Fx(p) = p−1(x). Then Fx naturally factors through the category
Cdisc(πtop1 (X,x)) of (discrete) πtop1 (X,x)-sets. The natural action of πtop1 (X,x) on Fx(p) is given by
monodromy.

Lemma 2.2 (monodromy) For any p : Y → X ∈ RtopX , any path c : [0, 1]→ X and any y ∈ Fc(0)(p),
there exists a unique path c̃y : [0, 1] → Y such that p ◦ c̃y = c and c̃y(0) = y. Furthermore, if
c1, c2 : [0, 1]→ X are two homotopic paths with fixed ends then c̃1,y(1) = c̃2,y(1).

In particular, one gets a well defined action ρx(p) : πtop1 (X,x) → AutSets(Fx(p)) sending [γ] ∈
πtop1 (X,x) to ρx(p)([γ]) : y 7→ γ̃y(1) and ρx defines a group morphism ρx : πtop1 (X,x) → AutFct(Fx),
[γ] 7→ ρx(−)([γ]).

And, actually, one has:

Proposition 2.3 Assume that X is connected, locally arcwise connected and locally simply connected.
Then Fx : RtopX → Sets induces an equivalence of categories

Fx : RtopX ≈ Cdisc(πtop1 (X,x)).
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Proof (sketch of). A universal covering for X pointed at x is an element (p̃X : X̃ → X, x̃) ∈ Rtop(X,x)

such that for any (p : Y → X, y) ∈ Rtop(X,x), there exists a unique morphism from (p̃X , x̃) to (p, y) in

Rtop(X,x).
Step 0: basic facts about topological coverings.

1. For any (pi : Yi → X, yi) ∈ Rtop(X,x) with Yi connected, i = 1, 2 HomRtop
(X,x)

((p1, y1), (p2, y2)) 6= ∅ if

and only if p1 ◦ (π1(Y1, y1)) ⊂ p2 ◦ (π1(Y2, y2)) and IsomRtop
(X,x)

((p1, y1), (p2, y2)) 6= ∅ if and only if

p1 ◦ (π1(Y1, y1)) = p2 ◦ (π1(Y2, y2)).
In particular, any (p : Y → X, y) ∈ Rtop(X,x) with Y simply connected is a universal covering for
X pointed at x.

2. For any (p : Y → X, y) ∈ Rtop(X,x) with Y connected, p : Y → X is Galois if and only if p◦(π1(Y, y))

is normal in πtop1 (X,x).
In particular, if Y is simply connected then p : Y → X is automatically Galois.

3. For any (p : Y → X, y) ∈ Rtop(X,x) with Y connected, one can show that for any [γ] ∈ Norπtop1 (X,x)(p◦
(πtop1 (Y, y))) there exists a unique u([γ]) ∈ AutRtopX (p) such that p(y) = γ̃y(1). This defines a

group morphism u : Norπtop1 (X,x)(p ◦ (π
top
1 (Y, y)))→ AutRtopX (p) which fits in the following canon-

ical short exact sequence:

1→ πtop1 (Y, y)
p◦→ Norπtop1 (X,x)(p ◦ (π1(Y, y)))

u→ AutRtopX (p)→ 1.

In particular, if Y is simply connected then u : πtop1 (X,x)→̃AutRtopX (p) is an isomorphism.

Step 1: Universal covering. The hypotheses on X ensure the existence of universal coverings. They
can be explicitly constructed as follows. Let X̃ denote the set of all paths c : [0, 1] → X with
c(0) = x modulo homotopy with fixed ends. One thus gets a well-defined map p̃X : X̃ → X sending
[c] ∈ X̃ to p([c]) = c(1). X̃ can be endowed with a topology in such a way that p̃X : X̃ → X
becomes a topological cover. For any [c] ∈ X̃, let Up̃([c]) be a simply connected open neighbor-
hood of p̃([c]) ∈ X. Since Up̃([c]) is simply connected, for any u ∈ Up̃([c]) there exists a path
(p̃([c]), u) : [0, 1] → X, unique up to homotopy with fixed ends, from p̃([c]) to u. This yields a
well-defined map ΦUp̃([c]) : p̃−1(Up̃([c]))→ Up̃([c])× p̃−1(p̃([c])) sending [c′] to (p̃([c′]), [(p̃([c]), p̃([c′]))][c′]),
which is actually bijective (with inverse map the map Up̃([c])×p̃−1(p̃([c]))→ p̃−1(Up̃([c])) sending (u, [c′])
to [c′][(u, p̃([c′]))). Furthermore, for two simply connected open neighborhoods U1

p̃([c]), U
2
p̃([c]) of p̃([c]),

ΦU1
p̃([c])
◦ Φ−1

U2
p̃([c])

: U1
p̃([c]) ∩ U

2
p̃([c]) × p̃

−1(p̃([c]) → U1
p̃([c]) ∩ U

2
p̃([c]) × p̃

−1(p̃([c]) is continous. Hence there

exists a unique topology on X̃ such that the p̃−1(Up̃([c])) are open and the ΦUp̃([c]) : p̃−1(Up̃([c])) →
Up̃([c]) × p̃−1(p̃([c])) are homeomorphisms. For this topology X̃ is separated, simply connected and
p̃ : X̃ → X is a topological cover. Furthermore the isomorphism u : π1(X,x)→̃AutRtopX (p̃) is just given

by the translation π1(X,x)× X̃ → X̃, ([γ], [c]) 7→ [c][γ].
Step 2: Fx is essentially surjective. Since Fx commutes with finite coproduct, it is enough to show
that the connected objects in Cdisc(πtop1 (X,x)) are in the essential image of Fx. So let E be a tran-
sitive πtop1 (X,x)-set. Then, for any e ∈ E one has Stabπtop1 (X,x)(e) ⊂ πtop1 (X,x) = AutRtop

(X,x)
(p̃) and

writing the corresponding quotient cover p̃Stab
π
top
1 (X,x)

(e) : X̃/Stabπtop1 (X,x)(e) → X one check that

Fx(p̃Stab
π
top
1 (X,x)

(e)) and E are isomorphic in Cdisc(πtop1 (X,x)).
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Step 3: Fx is fully faithfull. From step 2, this amount to showing that for any subgroups N1, N2 ⊂
πtop1 (X,x), the canonical map

Fx : HomRtopX
(p̃N1 , p̃N2)→ homCdisc(πtop1 (X,x))(π

top
1 (X,x)/N1, π

top
1 (X,x)/N2)

is bijective. For this, just observe that the map Φx : HomCdisc(πtop1 (X,x))(π
top
1 (X,x)/N1, π

top
1 (X,x)/N2)→

homRtopX
(p̃N1 , p̃N2) sending f : πtop1 (X,x)/N1 → πtop1 (X,x)/N2 to Φx(f) : X̃/N1 → X̃/N2, [c]N1 7→

[c]f(1)N2 is an inverse for Fx. �

Corollary 2.4 Assume that X is connected, locally arcwise connected and locally simply connected.Then
the group morphism ρx : π1(X,x)→ AutFct(Fx) is an isomorphism.

Also, the following corollary immediately follows from proposition 2.3.

Corollary 2.5 Assume that X is connected, locally arcwise connected and locally simply connected.

Then the category RftopX of all finite topological covers of X is Galois with fundamental group ̂πtop1 (X,x).

2.2 Etale covers

Let X be a connected, locally noetherian scheme and RetX the category of finite etale covers of X. For
any geometric point x : spec(Ω)→ X, let Fx : RetX → FSets, f : Y → X 7→ Yx(Ω) denote the functor
”geometric fiber over x”. Then:

Theorem 2.6 The category RetX is Galois with fibre functors Fx, x ∈ X(Ω), Ω = Ω.

Proof. See [Mur67, p. 54-63]. One has to check axioms (1) to (6) of the definition of a Galois category.
Axiom (1): RetX has a final object IdX : X → X and, for any fi : Yi → X ∈ RetX , i = 1, 2, one classically
has Y1 ×p1,X,p2 Y2 → X ∈ RetX .
Axiom (2): RetX has an initial object ∅ and, for any fi : Yi → X ∈ RetX , i = 1, 2, one straightforwardly
has that Y1

∐
Y2 → X ∈ RetX .

Lemma 2.7 Universal quotients by finite groups exist in RetX . Furthermore, such quotients are strict
epimorphisms in RetX .

Proof. Let f : Y → X ∈ RetX and let G be a finite group such that α : G → AutRetX (f). We have to
show that there exists f : Y/G → X ∈ RetX and π ∈ HomRetX

(f, f) such that for any f ′ : Y ′ → X and
for any π′ ∈ HomRetX

(f, f ′) with π′ ◦ α(g)(f) = π′ ◦ f , g ∈ G there exists a unique π′ ∈ HomRetX
(f, f ′)

satisfying π′ ◦ π = π′.

1. Y = spec(A), X = spec(B): Then one straightforwardly checks that f : Y := spec(AG) → X is
the universal quotient of f : Y → X in the category of X-schemes. It remains to prove that
f ∈ RetX . Since f : Y → X is finite, so is f : spec(AG) → X it actually only remains to prove
that f : X := spec(AG)→ X is etale.
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(a) Let X ′ = spec(B′) → X be a flat, affine base change and consider the following cartesian
diagram:

Y ′
π′ //

��
�

f ′

$$
X
′ f

′
//

��
�

X ′

��
Y π

//

f

::X
′

f

// X.

Let α′ : G → AutRet
X′

(f ′) denote the canonical induced action of G on Y ′. Then f
′ :

Y
′ → X ′ is the universal quotient of f ′ : Y ′ → X ′ in the category of X ′-schemes that is,

Y ′ = spec((A⊗B B′)G).
Indeed, one has the exact sequence of B-algebras:

0→ AG → A

P
g∈G(IdA−g·)
→

⊕
g∈G

A

Hence, since B → B′ is a flat B-algebra, one gets the exact sequence of B′-algebras

0→ AG ⊗B B′ → A⊗B B′
P
g∈G(IdA−g·)⊗BIdB′→

⊕
g∈G

A⊗B B′,

whence AG ⊗B B′ = (A⊗B B′)G.

(b) Let y ∈ Y . Then X ′ := spec(OX,f(y)) → X is an affine flat base change as above and

there is a unique y′ ∈ Y ′ lying above y in Y
′. Furthermore, OY ,y = O

Y
′
,y′

. In particular,

f : X → X is etale at y ∈ Y if and only if f ′ : X ′ → X ′ is etale at y′ ∈ Y ′. As a result, one
may assume that B is a local noetherian ring with maximal ideal say MB.

(c) It also follows from faithfully flat descent that for any faithfully flat morphism X ′ → X,
f : Y → X is etale if and only if f ′ : Y ′ → X ′ is etale. Since spec(B̂)→ spec(B) is faithfully
flat, where B̂ denotes the completion of B with respect to its maximal idealMB, one may
assume that B is a complete local noetherian ring.

(d) Let x ∈ X be the closed point of X. Since f : Y → X ∈ RetX , for any y ∈ f−1(x), k(y)/k(x)
is a finite separable extension so one can choose a finite Galois extension K/k(x) such that
k(y) ↪→ K, y ∈ f−1(x). Then there exists a flat local finite B-algebra B → B′ such that
B′/MB′ = K [EGA3, Prop. 10.3.1, Cor. 10.3.2]. Thus, by step (b) above, one may assume
that k(y) = k(x), y ∈ f−1(x).

(e) Now, one has:
A =

⊕
y∈f−1(x)

B =
⊕

O∈f−1(x)/G

⊕
y∈O

B.

Hence:
AG =

⊕
O∈f−1(x)/G

(
⊕
y∈O

B)G =
⊕

O∈f−1(x)/G

B,

Whence the conclusion.
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2. General case: Reduce to case 1. by using that f : Y → X ∈ RetX is finite hence affine (local
existence) and the unicity of universal quotient up to canonical isomorphism (glueing).

Eventually, observe that π : Y → Y ∈ Ret
Y

hence is open so π(Y ) is an open subscheme of Y co-
inciding with the scheme-theoretic image of π. If π(Y ) 6= Y then, by the universal property of the
scheme-theoretic image π(Y )→ X would satisfy, as well, the universal property of quotient in RetX : a
contradiction. So π is faithfully flat hence a strict epimorphism in RetX . �

Axiom (3): For any fi : Yi → X ∈ RetX , i = 1, 2 and for any u ∈ HomRetX
(f1, f2), u : Y1 → Y2 ∈ RetY2

hence is both open and closed. In particular, with Y ′2 := u(Y1), Y ′′2 := Y2 \ Y ′2 , one has Y2 = Y ′2
∐
Y ′′2

and u factors as u : Y1
u|Y
′
2=U ′→ Y ′2

iY ′2=u′′
→ Y2 = Y ′2

∐
Y ′′2 with u′ a faithfully flat morphism hence a strict

epimorphism in RetX and u′′ an open immersion hence a monomorphism in RetX .

Axiom (4): Just observe that Fx(f : Y → X) = ∅ if and only if Y = ∅ and that Fx commutes with
fibered products.
Axiom (5): The fact that Fx commutes with direct sums and transforms strict epimorphisms into
strict epimorphisms is straightforward. So it only remains to prove that Fx commutes with universal
quotients by finite groups of automorphisms.
So, let f : Y → X ∈ RetX and let G be a finite group such that α : G → AutRetX (f). By functoriality,
one gets α : G → AutFSets(Fx(f)) and, since π : f → f is the universal quotient of f by G in RetX ,
one has (i) Fx(π) : Fx(f) � Fx(f) is surjective and (ii) for any g ∈ G Fx(π) ◦ α(g) = Fx(π) hence
Fx(π) : Fx(f)� Fx(f) factors canonically through Fx(f)/G� Fx(f). And, actually, Fx(f)/G→̃Fx(f)
is an isomorphism. Indeed, this follows from:

Lemma 2.8 Let f : Y → X ∈ RetX and let G be a finite group such that α : G→ AutRetX (f). Then:
(i ) G acts transitively on the fibers of π : Y → Y/G ∈ RetY/G;
(ii) For any y ∈ Y , set Dπ(y) := StabG(y) ⊂ G for the decomposition group of y. Then k(y)/k(π(y))
is a Galois extension and the canonical morphism Dπ(y)� Gal(k(y)|k(π(y))) is an epimorphism.

Proof. As in the proof of lemma 2.7, one may assume that Y = spec(A), Y = spec(AG) and
y =M∈ spm(AG) is a closed point.
(i)Let yi = Pi ∈ π−1(y), i = 1, 2. Then, as AG → A is a finite AG-algebra, it follows from the
going up theorem that P1, P2 are also maximal ideals. Assume that P1 6= gP2, g ∈ G then, by the
Chinese remainder theorem, there exists a1 ∈ P1 \ ∪g∈GgP2. Hence

∏
g∈G ga1 ∈ AG ∩P1 \AG ∩P2: a

contradiction.
(ii) Let P ∈ π−1(y). Then k(y)/k(y) is a finite separable extension so there exists a ∈ A such
that k(y)(a) = k(y), where a denotes the reduction of a ∈ A modulo P. The polynomial Pa :=∏
g∈G(T − ga) ∈ AG[T ] splits completely over A and its reduction P a ∈ k(y)[T ] modulo P ∩AG splits

completely over k(y) and has root a hence k(y) = k(y)(a) is normal over k(y).
By definition of Dπ(y), P 6= gP, g /∈ Dπ(y) hence, by the Chines remainder theorem, there

exists a1 ∈ A such that a1 ≡ a mod P and a1 ≡ 0 mod g−1P, g /∈ Dπ(y). By construction
k(y) = k(y)(a) = k(y)(a1). Also, P a1 ∈ k(y)[T ] has roots a1 hence, for any σ ∈ Gal(k(y)|k(y)), σ(a1)
is again a root of P a1 i.e. there exists gσ ∈ G such that gσa1 = σ(a1). But, by construction of a1,
ga1 = 0, g /∈ Dπ(y) whereas a1 6= 0 hence σ(a1) 6= 0, which shows that gσ ∈ Dπ(y) �
Axiom (6): For any fi : Yi → X ∈ RetX , i = 1, 2 let u ∈ HomRetX

(f1, f2) such that Fx(u) : Fx(f1)→̃Fx(f2)
is bijective. Recall that u : Y1 → Y2 ∈ RetY2

hence the above hypothesis shows that u : Y1 → Y2 ∈ RetY2
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has rank 1 hence is an isomorphism. �

For any geometric point x : spec(Ω)→ X,

π1(X,x) := π1(RetX ;Fx)

is the etale fundamental group of X with base point x. Similarly, for any two geometric points xi :
spec(Ωi)→ X, i = 1, 2,

π1(X;x1, x2) := π1(RetX ;Fx1), Fx2)

is the set of etale paths from x1 to x2. (Note that Ω1 and Ω2 may have different characteristics).

It follows from theorem 1.3 that π1(X;x1, x2) 6= ∅ and that π1(X,x1)→̃π1(X,x2) canonically, up
to inner automorphisms.

Eventually, given a morphism φ : X ′ → X of connected, locally noetherian schemes and a geometric
point x′ : spec(Ω)→ X ′, the base change functor H(φ) : RetX → RetX′ , f : Y → X 7→ p2 : Y ×f,X,φX ′ →
X ′ satisfies:

Fx′ ◦H(φ)(f) = (Y ×f,X,φ X ′)x′(Ω)
(∗)
= Yx(Ω) = Fφ(x′)(f),

where the equality (∗) follows from the universal property of fibre product. Hence H(φ) : RetX → RetX′
is a fundamental functor and one gets, correspondingly, a canonical profinite group morphism:

π1(φ) : π1(X ′, x′)→ π1(X,φ(x)).

Note that if φ : X ′ → X ∈ RetX then π1(φ) : π1(X ′, x′) ↪→ π1(X,φ(x)) is a monomorphism with
image Stabπ1(X,φ(x))(x′).

2.2.1 Spectrum of a field

Let k be a field and set X := spec(k). Then:

Proposition 2.9 For any geometric point x : spec(Ω)→ X, there is a profinite group isomorphism:

cx : π1(X,x)→̃Γk,

canonical up to inner automorphisms.

Proof.

1. Consider the canonical diagram of schemes:

X spec(Ω)xoo

��
spec(ks)

xs

OO

spec(k).oo

x

eeLLLLLLLLLLL

With these notation, it follows from theorem 1.3 that π1(X,x)→̃π1(X,x), canonically up to
inner automorphisms. Hence one can assume that Ω = k.
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2. By definition of the etale fundamental group, one has:

π1(X,x) = AutFct(HomSch/k(spec(k),−))
(∗)
= AutSch/k(spec(k))
= Aut(k|k)
(∗∗)
= Γk,

where the equality (∗) follows from Yoneda lemma and the equality (∗∗) is the canonical
restriction-to-ks isomorphism. �

2.2.2 Normal base scheme

Fix an integral scheme X with function field k(X). For any f : Y → X ∈ FRX let R(Y ) denote the
ring of rational functions on Y i.e. the direct product of the local rings of the generic points of Y ;
it comes equipped with a natural structure R(f) : k(X) ↪→ R(Y ) of k(X)-algebra and this defines a
functor R : FRX → FSAk(X).

Given a finite field extension i : k(X) ↪→ L, recall that the normalization πi : X̃i → X of X in
i : k(X) ↪→ L is the solution of the following universal problem. For any dominant normal X-scheme
f : Y → X such that R(f) : k(X) ↪→ R(Y ) factors through:

R(Y )

k(X)
?�

R(π)

OO

� �

i
// L
0 P

R(f)i
aaCCCCCCCCC

there exists a unique X-morphism fi : Y → X̃i such that R(fi) = R(f)i.
The normalization πi : X̃i → X always exists and is unique (up to a unique X-isomorphism). Fur-

thermore, for any affine open subscheme U ⊂ X, π−1
i (U) ⊂ X̃i is again an open affine subscheme and

the corresponding ring extension π#
i (U) : OX(U) ↪→ OX̃i(π−1

i (U)) is the integral closure of OX(U) in
L. In particular, X̃i is normal. When X is normal, πi : X̃i → X is a finite morphism. From now on,
we assume that X is also normal.

Given a finite separable k(X)-algebra i : k(X) ↪→ A =
∏r
j=1 Lj , let ij : k(X) ↪→ Lj denote the

composition of i : k(X) ↪→ A with the jth projection pj : A � Lj , j = 1, ..., r. Also, define the
normalization of X in i : k(X) ↪→ A to be the coproduct

∐r
j=1 πij :

∐r
j=1 X̃

ij → X and denote it,
again, by πi : X̃i → X. Then a finite separable k(X)-algebra i : k(X) ↪→ A =

∏r
j=1 Lj is etale over X

if πi : X̃i → X is unramified (or, equivalently, etale). We denote by FEAk(X),X the category of finite
separable k(X)-algebras etale over X.

Theorem 2.10 Let X be a connected normal scheme. The function ring functor induces an equiv-
alence of categories R : RetX ≈ FEAk(X),X a pseudo-inverse of which is given by the normalization
functor π− : FEAk(X),X ≈ RX , i : k(X) ↪→ A 7→ πi : X̃i → X.

Proof. See [SGA1, Chap. I, §10]. �
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Corollary 2.11 Let X be a connected, locally noetherian, normal scheme with generic point η :
k(X) → X. Let k(X) ↪→ Ω be an algebraically closed field extension defining geometric points xη :
spec(Ω) → spec(k(X)) and x : spec(Ω) → X. Let k(X) ↪→ Mk(X),X denote the maximal algebraic
field extension of k(X) in Ω which is etale over X.Then one has the canonical short exact sequence of
profinite groups:

1 // ΓMk(X),X
// Γk(X)

π1(spec(k(X)), xη) // π1(X,x) // 1.

In particular, this defines a canonical profinite group isomorphism:

Gal(Mk(X),X |k(X))→̃π1(X,x).

Proof. From theorem 2.10, the base change functor H(η) : RetX → Retspec(k(X)) is nothing but the
forgetful functor For : FEAk(X),X ↪→ FSAk(X). By the definition of the category FEAk(X),X ,
the natural functor morphism HomFEAk(X),X

(−,Mk(X),X) ↪→ HomFEAk(X),X
(−,Ω) induced by the

inclusion Mk(X),X ↪→ Ω is a functor isomorphism. Hence, HomFEAk(X),X
(−,Mk(X),X) : FEAk(X),X →

FSets is also a fibre functor for FEAk(X),X . Also, from §2.2.1, we may assume that Ω = k(X). Then:

uH(η) : π1(Spec(k(X)), xη)→ π1(X,x)

corresponds to the natural functor morphism:

AutFct(HomFSAk(X)
(−, k(X)))→ AutFct(HomFEAk(X),X

(−,Mk(X),X))

which, by Yoneda lemma, identifies with:

AutFSAk(X)
(k(X))→ AutFEAk(X),X

(Mk(X),X)

i.e. the restriction epimorphism Aut(k(X)|k(X)) � Gal(Mk(X),X |k(X)). Conclude again using the
canonical restriction isomorphism Aut(k(X)|k(X))→̃Γk(X). �

Example 2.12 Let X be a curve, smooth and geometrically connected over a field k and let X ↪→ X̃ be the smooth
compactification of X. Write X̃ \X = {P1, . . . , Pr}. Then, with the notation of corollary 2.11, k(X) ↪→ Mk(X),X is just
the maximal algebraic extension of k(X) in Ω unramified outside the places P1, . . . , Pr.

2.2.3 Geometrically connected varieties

Let k be a perfect field and let X be a scheme geometrically connected and of finite type over k. Fix
a geometric point x : spec(Ω)→ Xk with image x : spec(Ω)→ X and s : spec(Ω)→ spec(k).

Proposition 2.13 Then the structural morphism X → k induces a canonical short exact sequence of
profinite groups:

1→ π1(Xk, x)→ π1(X,x)→ π1(spec(k), s)→ 1. (2)

Remark 2.14 The statement of proposition 2.13 remains true without the assumtion that k is perfect. But, for this,
one needs an additional descent argument (see Step 1, §3.2.2).
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Example 2.15 Assume furthermore that X is normal. Then the assumption that X is geometrically connected over
k is equivalent to the assumption that k∩ k(X) = k and, with the notation of §2.2.2, the short exact sequence (2) is just
the one obtains from usual Galois theory:

1 → Gal(Mk(X),X
k
) → Gal(Mk(X),X) → Γk → 1.

The proof in the general case is slightly more difficult.

Proof. We use the criteria of proposition 1.18.
Exactness on the right: It follows from the fact that X is geometrically connected over k, which implies
that for any finite field extension k ↪→ l, Xl is connected.
Exactness on the left: This amounts to showing that for any f : Y → Xk ∈ R

et
Xk

there exists f : Y →
X ∈ RetX and a morphism from f×k k : Yk → Xk to f : Y → Xk in RetXk . So, let l be a field of definition

for f : Y → Xk, that we may assume to be Galois and finite over k (here, we use the assumption that
X is of finite type over k). Then the action of Γk over f : Y → Xk factors through Γ := Gal(l|k) and
it follows from Weil descent that the cover

∐
σ∈Γ

σf :
∐
σ∈Γ

σY → Xk is defined over k. Indeed, for
any τ ∈ Γ, let φτ : τ (

∐
σ∈Γ

σY )→̃
∐
σ∈Γ

σY defined by φτ ( τ ( σY ) = τσY and φτ : τ ( σY )→̃ τσY is
the canonical l-isomorphism fitting in:

τσY

��5
55

55
55

55
55

55
55

55

++VVVVVVVVVVVVVVVVVVVVVVVVVVV
φ−1
τ

##GG
GG

GG
GG

G

τ ( σY ) //

��
�

σY //

��
�

Y

��
l τ

//

τσ

66l σ
// l

Since φσ ◦ σφτ = φστ , σ, τ ∈ Γ, the φτ : τ (
∐
σ∈Γ

σY )→̃
∐
σ∈Γ

σY , τ ∈ Γ are a descent datum for∐
σ∈Γ

σY . Since Y is of finite type over k, one can cover it by finitely many open affine subschemes
Ui = spec(Ai), 1 ≤ i ≤ r and, up to enlarging l, one may assume that each of the Ui is defined over l.
But then ∐

σ∈Γ

σY =
∐
σ∈Γ

σ
⋃

1≤i≤r

σUi =
⋃

1≤i≤r

∐
σ∈Γ

σUi,

where
∐
σ∈Γ

σUi = spec(
∏
σ∈Γ

σAi) is an open affine subscheme Γ-stable. So the descent datum is
effective, that is there exist a a k-scheme Y and a k-isomorphism φ : Y →̃Yk (actually defined over l)
such that φτ = τφ ◦ φ−1, τ ∈ Γ. Then, since via this identification

∐
σ∈Γ

σf : Yk → Xk commutes
with the Γ-action, it follows from Weil descent for morphisms that

∐
σ∈Γ

σf : Yk → Xk is defined
over k that is there exist a k-morphism f : Y → X such that f ×k k : Yk → Xk is isomorphic to
f : Y → Xk in RetXk . Eventually, since Xk → X is faithfully flat, it follows from faithfully flat descent
that f : Y → X ∈ RetX .
Exactness in the middle:
- For any connected φ : spec(l)→ spec(k) ∈ Retspec(k), (φ×k X)×X Xk is just the identity Xk→̃Xk.

- For any connected f : Y → X ∈ RetX such that f ×k k : Yk → Xk admits a section, say s : Xk ↪→ Yk,
let l be a field of definition of s : Xk ↪→ Yk, that we may assume to be finite over k. Then there exists
a section sl : Xl ↪→ Yl of fl : Yl → Xl (such that sl ×l k : (Xl)k ↪→ (Yl)k identifies with s : Xk ↪→ Yk)
hence a morphism from Xl → X to f : Y → X (obtained by composing s with the cover Yl → Y . �
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Remark 2.16 Any k rational point on X produces a (conjugacy classe of) splitting(s) of (2). The converse question,
that is whether any splitting of (2) comes from a k-rational point on X is what is at stake in the section conjecture.
Also, determining group-theoretically which sections of (2) come from k rational points on X is often a crucial step in
anabelian proofs. Note that the section conjecture is false in general (for instance, if k = Fp is finite then, in general, (2)
admits infinitely many non conjugate splittings whereas X(k) is finite).

2.2.4 Abelian varieties

For an introduction to the general theory of abelian varieties, we refer to [Mum70]. In the following,
k always denotes an algebraically closed field.

Theorem 2.17 (Serre-Lang) Let k be an algebraically closed field and A an abelian variety over k.
For each n ≥ 1 let A[n] denote the finite subgroup underlying the kernel of the multiplication-by-n
morphism [nA] : A→ A and, for each prime l, set

Tl(A) := lim
←−

A[ln]3.

Then, there is a canonical isomorphism

π1(A, 0A)→̃
∏
l

Tl(A).

Proof (sketch of).

1. Claim: Let f : X → A ∈ RetA . Then X carries a structure of abelian variety such that f : X → A
becomes a separable isogeny.

To prove this, we will use the following criterion [Mum70, App. to §4].

Lemma 2.18 Let X be an irreducible scheme proper and of finite type over k, e ∈ X and
m : X ×k X → X a morphism of k-schemes such that m(e, x) = m(x, e), x ∈ X. Then X is an
abelian variety over k with group law m and identity e.

Let Γm ↪→ A×k A×k A denote the graph of the group law m : A×k A→ A on A and consider
the following cartesian square:

Γm
� � //

�

A×k A×k A

Γ′
� � //

OO

X ×k X ×k X

f×f×f

OO

Then, by construction, one has the following commutative square:

Γ′ //

p12
��

Γm
p12

��
X ×k X f×f

// A×k A

and, on the one hand, since f : X → A is etale so are f×f : X×kX×kX → A×kA and Γ′ → Γm
and, on the other hand, by definition of the graph, p12 : Γm→̃A×k A is a k-isomorphism hence

3Recall that if l is prime to the characteristic of k then Tl(A) ' Z2g
l whereas if l = p is the characteristic of k then

Tp(A) ' Zrp, where g and r(≤ g) denotes the dimension and p-rank of A respectively.
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is etale. So, it follows from the commutativity of the above diagram that p12 : Γ′ → X ×k X is
etale.
Fix now x0 ∈ X such that f(x0) = 0A and let Γ be the connected component of Γ′ containing
(x0, x0, x0). Write p := p12|Γ : Γ→ X×kX. The assertion of step 1 will then follow from lemma
2.18 and the following claim.

Claim: p : Γ→̃X ×k X is an isomorphism and, defining mX : X ×k X
p−1

→ Γ
p3→ X, one has

mX(x, x0) = x = mX(x0, x), x ∈ X.

It remains to prove the claim. First, as p is an etale cover it is enough to prove that there
exists (x1, x2) ∈ X ×k X such that |p−1((x1, x2))| = 1. So let σ1, σ2 : X → Γ defined by
σ1(x) = (x0, x, x) and σ2(x) = (x, x0, x) (note that , for i = 1, 2, σi(X) is connected, σi(X) ⊂ Γ′

and (x0, x0, x0) = σi(x0) ∈ σi(X) hence σi(X) ⊂ Γ). Since p|σ2(X) : σ2(X)→̃X ×k {x0}, it is
enough to prove that p−1(X ×k {x0}) = σ2(X) or, equivalently, that q−1(x0) = σ2(X), where
q = p2|Γ : Γ → X. But as σ2(X) is an irreducible component of q−1(x0), it is actually enough
to prove that q−1(x0) is irreducible. As already noticed, p : Γ → X ×k X is etale and as
f × f : X ×k X → A ×k A is etale as well so is Γ → A ×k A hence Γ is regular and, being
connected, is irreducible. Furthermore q = p2 ◦ p : Γ → X is smooth as the composite of the
etale morphism p with the smooth morphism p2 and q ◦ σ1 = IdX so the claim follows from the
following lemma [Mum70, Lemma p. 168].

Lemma 2.19 Let S, T be irreducible schemes of finite over k and f : S → T a smooth proper
k-morphism. If there exists a section s : T → S of f then all the fibres of f are irreducible.

The last part of the claim follows then from mX(x, x0) = p3(p−1(x, x0)) = p3(σ2(x)) = x and
mX(x0, ) = p3(p−1(x0, x)) = p3(σ1(x)) = x (for the second equality, note that the parts of σ1

and σ2 can be interverted).

2. Now let f : X → A be an isogeny with kernel of exponent say n ≥ 1. Then ker(f) ⊂ ker([nX ])
hence one has a canonical commutative diagram:

X/ker(f)
g

zzuuuuuuuuu
A

X X.
[nX ]

oo

OO

f

::uuuuuuuuuu

Also, it follows from the surjectivity of f that f ◦ g = [nA].
Combining the above remark and step 1, one gets that ([ln] : A → A)n≥0 is cofinal among the
finite etale covers of A with degree a power of l that is

π1(A, 0A)(l) = lim
←−

A[ln] = Tl(A). �

Remark 2.20 As already noticed, if k is any field and A is an abelian variety over k, there is always a canonical
split short exact sequence of profinite groups:

1 // π1(A×k k, 0A) // π1(A, 0A) // Γk //

0A

xx
1 ,

which identifies canonically π1(A, 0A) with the Γk-module
Q
l Tl(A) o Γk.
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Now, assume that k = C and that A = Cg/Λ, where Λ ⊂ Cg is a lattice. Then, on the one
hand, the universal covering of A is just the quotient map Cg → A and has group πtop1 (A(C), 0A) ' Λ
whereas, on the other hand, for any prime l:

Tl(A) = lim
←−

A[ln]

= lim
←−

1
ln

Λ/Λ

= lim
←−

Λ/lnΛ

= Λ(l),

whence
π1(A, 0A) '

∏
l

Tl(A) '
∏
l

πtop1 (A(C), 0A)(l) ' ̂πtop1 (A(C), 0A).

This is a special case of the more general Riemann existence theorem.

2.2.5 Riemann Existence Theorem

Complex analytic spaces

- ”Affine” complex analytic spaces. Given analytic functions f1, . . . , fr : U → C defined on the poly-
disc U ⊂ Cn of all z = (z1, . . . , zn) ∈ Cn such that |zi| < 1, i = 1, . . . , n, let U(f1, . . . , fr) denote the
locally ringed space in C-algebra with:
- underlying topological space the closed subset ∩ri=1f

−1
i (0) ⊂ U endowed with the topology inherited

from the transcendent topology on U ;
- structural sheaf OU/ < f1, . . . , fr >, where OU is the sheaf of germs of holomorphic functions on U .

- Complex analytic spaces. The category AnC of complex analytic spaces is the full subcategory of the
category LRC−Alg of locally ringed spaces in C-algebra whose objects (X,OX) are locally isomorphic
to affine complex analytic spaces.

Complex analytic spaces associated with a scheme locally of finite type over C LetX be
a scheme locally of finite type over C

Claim: The functor HomLRC−Alg(−, X) : AnopC → Sets is representable that is there exists a complex
analytic space Xan and a morphism φX : Xan → X in LRC−Alg inducing a functor isomorphism

φX◦ : HomAnC(−, Xan)→̃HomLRC−Alg(−, X).

φX : Xan → X is unique up to a unique X-isomorphism and is called the complex analytic
space associated with X. It can be explicitly described as follows. Let {(Ui = spec(Ai))i∈I , (φi,j :
Ui,j→̃Uj,i)i,j∈I} be a glueing data for X by affine schemes. For each i ∈ I, since Ai is a C-algebra of
finite type, it can be written as Ai = C[X]/ < fi,1, . . . , fi,ri >. Define Xan to be the complex analytic
space given by the glueing data {(U(fi,1, . . . , fi,ri))i∈I , (φi,j : Ui,j→̃Uj,i)i,j∈I}. For more details, see for
instance [S56].

Eventually, given a C-morphism f : X → Y of schemes locally of finite type over C, it follows from
the universal property of φY : Y an → Y that there exists a unique morphism fan : Xan → Y an in
AnC such that φY ◦ fan = f ◦ φX .
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Statement Let SchLFT /C denote the category of schemes locally of finite type over C. One thus
gets a functor (−)an : SchLFT /C → AnC. Riemann existence theorem can now be formulated as
follows.

Theorem 2.21 For any scheme X locally of finite type over C, the functor (−)an : SchLFT /C→ AnC
induces an equivalence of categories

(−)an : RetX ≈ RetXan .

In particular, as RetXan is equivalent to the category FRtopXtop of finite topological covers of the under-
lying transcendent topological space Xtop of X4, for any x ∈ X one has a canonical profinite groups
isomorphism:

̂πtop1 (Xtop, x) ' π1(X,x).

Proof. See [SGA1, XII, Th. 5.1]. �

Example 2.22 Let X be a smooth connected C-curve of type (g, r) (that is the projective compactification X̃ of X

has genus g and |X̃ \X| = r). Then, for any x ∈ X one has a canonical profinite group isomorphism bΓg,r ' π1(X, x).
In particular, if g = 0 then π1(X, x) is the pro-free group on r − 1 generators, so, any finite group G generated by

≤ r−1 elements is a quotient of π1(P1
C \{t1, . . . , tr}, x) or, equivalently, appears as the Galois group of a Galois extension

C(T ) ↪→ K unramified everywhere except over t1, . . . , tr. This solves the inverse Galois problem over C(T ).

3 Etale fundamental group

3.1 Descent

3.1.1 The formalism of descent

We recall briefly the formalism of descente. Let S be a scheme and CS a subcategory of the category
of S-schemes closed under fiber product. A fibered category over CS is a pseudofunctor X : CS → Cat
that is the data of:
- for any U ∈ CS , a category XU (sometimes called the fibre of X over U → S);
- for any morphism φ : V → U in CS , a base change functor φ? : XU → XV ;
- for any morphisms W

χ→ V
φ→ U in CS , a functor isomorphism αχ,φ : χ?φ?→̃(φ ◦ χ)? satisfying the

usual cocycle relations that is, for any morphisms X
ψ→ W

χ→ V
φ→ U in CS , the following diagrams

are commutative:

ψ?χ?φ?

αψ,χ(φ?)

��

ψ?(αχ,φ)
// ψ?(φ ◦ χ)?

αψ,φ◦χ
��

(χ ◦ ψ)?φ? αχ◦ψ,φ
// (φ ◦ χ ◦ ψ)?.

Given a morphism φ : U ′ → U in CS , write U ′′ := U ′ ×U U ′, U ′′′ := U ′ ×U U ′ ×U U ′, pi : U ′′ → U ′,
i = 1, 2, pi,j : U ′′′ → U ′′, 1 ≤ i < j ≤ 3, ui : U ′′′ → U ′, i = 1, 2, 3 for the canonical projections.

4To see this, observe that if f : Y → Xtop ∈ FRtop
Xtop is a topological covers then the local trivializations endows Y

with a unique structure of analytic space (induced from Xan) and such that, with this structure, f : Y → Xtop becomes
an analytic cover. Conversely, if f : Y → Xan ∈ FRan

Xan then, for any y ∈ Y one can find open affine neighborhoods
V = spec(B) of y and U = spec(A) of f(y) such that f(V ) ⊂ U , B = A[X]/ < f > and ( ∂f

∂X
)y ∈ O×Y,y [L00, Prop. 4.11]

hence the local inversion theorem gives local trivializations.
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A morphism φ : U ′ → U in CS is said to be a morphism of descent for X if for any x, y ∈ XU and
any morphism f ′ : φ?x→ φ?y in XU ′ such that the following diagram commute:

p?1φ
?(x)

p?1f
′

//

αp1,φ(x)

zzuuuuuuuuu
p?1y

αp1,φ(y)

""EE
EE

EE
EE

φ
′?(x)

αp2,φ(x) $$JJJJJJJJJ

p?1f
′

p?2f
′

// φ
′?(y)

αp2,φ(y)||yy
yy

yy
yy

p?2φ
?(x)

p?2f
′

// p?1y

there exists a unique morphism f : x→ y in XU such that φ?f = f ′.
A morphism φ : U ′ → U in CS is said to be a morphism of effective descent for X if φ : U ′ → U is

a morphism of descent for X and if for any x′ ∈ XU ′ and any isomorphism u : p?1(x
′)→̃p?2(x′) in XU ′′

such that the following diagram commute

p?1,3p
?
1(x
′)

p?1,3u //

αp1,3,p1 (x′)

xxqqqqqqqqqq
p?1,3p

?
2(x
′)

αp1,3,p2 (x′) &&MMMMMMMMMM

u?1(x
′)

p?1,3u //

p?1,2u

��

u?3(x
′)

p?1,2p
?
1(x
′)

αp1,2,p1 (x′)

OO

p?1,2u

��

p?2,3p
?
2(x
′)

αp2,3,p2 (x′)

OO

p?1,2p
?
2(x
′)

αp1,2,p2 (x′) &&MMMMMMMMMM
p?2,3p

?
1(x
′)

p?2,3u

OO

αp2,3,p1 (x′)

xxqqqqqqqqqq

u?2(x
′) u?2(x

′)

p?2,3u

FF

there is a (necessarily unique since φ : U ′ → U is a morphism of descent for X) x ∈ XU and an
isomorphism f ′ : φ?(x)→̃x′ in XU ′ such that the following diagram commute

p?1φ
?(x)

p?1f
′

//

αp1,φ(x)

zzuuuuuuuuu
p?1(x

′)

u

��

φ
′?(x)

p?1f
′

44

p?2f
′

**
p?2φ

?(x)
p?2f
′

//
αp2,φ(x)

ddIIIIIIIII

p?2(x
′)

The pair {x′, u : p?1(x
′)→̃p?2(x′)} is called a descent datum for X relatively to φ : U ′ → U . De-

noting by D(φ) the category of descent data for X relatively to φ : U ′ → U , saying that φ : U ′ → U
is a morphism of descent for X is equivalent to saying that the canonical functor XU → D(φ) is fully
faithfull and saying that φ : U ′ → U is a morphism of effective descent for X is equivalent to saying
that the canonical functor XU → D(φ) is an equivalence of category.

37



Example 3.1 The basic example is that any faithfully flat and quasi-compact morphism φ : U ′ → U is a morphism of
effective descent for the fibered category of quasi-coherent modules. See for instance [FGA05, Part.1], for a comprehensive
introduction to descent technics.

3.1.2 Selected results

The fibered categories we will now focus our attention on are the categories of finite etale covers. We
will only mention results that will be used later. For the proofs, we refer to [SGA1, Chap. VIII and
IX] .

Theorem 3.2 Let X be a locally noetherian scheme and i : Xred ↪→ X be the underlying reduced
closed subscheme. Then the functor i? : RetX ≈ Ret

Xred is an equivalence of categories. In particular, if
X is connected, for any geometric point x ∈ Xred one has a canonical profinite group isomorphism

π1(i) : π1(Xred, x)→̃π1(X,x).

Theorem 3.3 Let S be a locally noetherian scheme and let f : S′ → S be a morphism which is either:
- finite and surjective or
- faithfully flat and quasi-compact .
Then f : S′ → S is a morphism of effective descent for the fibered category of etale, separated schemes
of finite type.

Corollary 3.4 Let S be a locally noetherian scheme and let f : S′ → S be a morphism which is either:
- finite, radiciel and surjective or
- faithfully flat, quasi-compact and radiciel.
Then f : S′ → S induces an equivalence of categories f? : RetS ≈ RetS′.

Theorem 3.5 Let S be a locally noetherian scheme and let f : S′ → S be a proper and surjective
morphism. Then f : S′ → S is a morphism of effective descent for the fibered category of etale covers.

3.1.3 Comparison of fundamental groups for morphism of effective descent

Assume that f : S′ → S is a morphism of effective descent for the fibered category of etale covers.
Our aim is to interpret this in terms of fundamental groups.

Consider the usual notation S′′, S′′′,

pi : S′′ → S′, i = 1, 2,
pi,j : S′′′ → S′′, 1 ≤ i < j ≤ 3,
ui : S′′′ → S′, = 1, 2, 3.

and assume that S, S′, S′′, S′′′ are disjoint union of connected schemes, then, with E′ := π0(S′),
E′′ := π0(S′′), E′′′ := π0(S′′′), also set:

qi = π0(pi) : E′′ → E′, i = 1, 2,
qi,j = π0(pi,j) : E′′′ → E′′, 1 ≤ i < j ≤ 3,
vi = π0(ui) : E′′′ → E′, i = 1, 2, 3.

Write C := RetS , C′ := RetS′ , C′′ := RetS′′ , C′′′ := RetS′′′ . We assume that S is connected.
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Fix s′0 ∈ E′ and for each s′ ∈ E′, fix an element s′ ∈ E′′ such that

q1(s′) = s′0 and q2(s′) = s′.

Also, for any s′ ∈ E′ (resp. s′′ ∈ E′′, s′′′ ∈ E′′′) fix a geometric point s′ ∈ s′ (resp. s′′ ∈ s′′, s′′ ∈ s′′)
and write πs′ := AutFct(F ′s′) (resp. πs′′ := AutFct(F ′′s′′), πs′′′ := AutFct(F ′′′s′′′)) for the corresponding
fundamental group.

Since for any s′′ ∈ E′′ pi(s′′) and qi(s′′) lie in the same connected component of S′, one gets etale
paths αs

′′
i : F ′′s′′ ◦ p?i = F ′pi(s′′)→̃F

′
qi(s′′)

, hence profinite group morphisms:

qs
′′
i : πs′′ → π1(qi(s′′), pi(s′′)) ' πqi(s′′), i = 1, 2.

Similarly, one gets etale paths αs
′′′
i,j : F ′′′s′′′ ◦ p?i,j = F ′′pi,j(s′′′)→̃F

′′
qi,j(s′′′)

and profinite group morphisms:

qs
′′′
i,j : πs′′′ → π1(qi,j(s′′′), pi(s′′′)) ' πqi,j(s′′′), 1 ≤ i < j ≤ 3.

Eventually, from the etale paths

F ′′′s′′′ ◦ p?1,2 ◦ p?1→̃Fv1(s′′′)←̃F ′′′s′′′ ◦ p?1,3 ◦ p?1;
F ′′′s′′′ ◦ p?1,2 ◦ p?2→̃Fv2(s′′′)←̃F ′′′s′′′ ◦ p?2,3 ◦ p?1;
F ′′′s′′′ ◦ p?1,3 ◦ p?2→̃Fv3(s′′′)←̃F ′′′s′′′ ◦ p?2,3 ◦ p?2;

one gets as
′′′
i ∈ πvi(s′′′), i = 1, 2, 3 such that

q
q1,2(s′′′)
1 ◦ qs′′′1,2 = int(as

′′′
1 ) ◦ qq1,3(s′′′)

1 ◦ qs′′′1,3 ;

q
q1,2(s′′′)
2 ◦ qs′′′1,2 = int(as

′′′
2 ) ◦ qq2,3(s′′′)

1 ◦ qs′′′2,3 ;

q
q1,3(s′′′)
2 ◦ qs′′′1,2 = int(as

′′′
3 ) ◦ qq2,3(s′′′)

2 ◦ qs′′′2,3 ;

Since f : S′ → S is a morphism of effective descent, the above data allows us to recover C from C′, C′′,
C′′′ up to an equivalence of category hence to reconstruct π1(S, p(s′0)) from the πs′ , πs′′ , πs′′′ .

More precisely, the category C′ with descent data for f : S′ → S is equivalent to the category
C({πs′}s′∈E′) together with a collection of functor automorphisms gs′′ : Id→̃Id, s′′ ∈ E′′ satisfying the
following relations:

(1) gs′′qs
′′

1 (γ′′) = qs
′′

1 (γ′′)gs′′ , s′′ ∈ E′′;
(2) gs′ = g

s′0
, s′ ∈ E′;

(3) as
′′′

3 gq1,3(s′′′)a
s′′′
1 = gq2,3(s′′′)a

s′′′
2 gq1,2(s′′′), s′′′ ∈ E′′′,

So, set
Φ :=

∐
s′∈S′

πs′
∐

s′′∈E′′
Ẑgs′′/ < (1), (2), (3) >,

where
∐

stands for the free product in the category of profinite groups and let N be the class
of all normal subgroups N C Φ such that [Φ : N ] and [πs′ : i−1

s′ (N)] are finite (here is : πs ↪→∐
s′∈S′ πs′

∐
s′′∈E′′ Ẑgs′′ � Φ denotes the canonical morphism). Then writing

π := lim
←−
N∈N

Φ/N
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one gets that the category C′ with descent data for f : S′ → S is also equivalent to the category C(π).
Whence:

Theorem 3.6 With the above assumptions and notation, one has a canonical profinite group isomor-
phism

π1(S, p(s′0))→̃π.

Corollary 3.7 With the above assumptions and notation, if E′ and E′′ are finite and if the πs′,
s′ ∈ E′ are topologically of finite type then so is π1(S, p(s′0)).

Corollary 3.8 Let S be a connected scheme and let f : S′ → S be a universally submersive and
geometrically connected morphism. Then S′ is connected and for any geometric point s′ ∈ S′ the
canonical profinite group morphism π1(f?) : π1(S′, s′)� π1(S, f(s′)) is an epimorphism.

If, furthermore, f : S′ → S is a morphism of effective descent for the fibered category of etale
covers, let s′′ := (s′, s′) ∈ S′′ and π1(p?i ) : π1(S′′, s′′)→ π1(S′, s′), i = 1, 2 the two canonical profinite
group morphisms induced by the canonical projections pi : S′′ → S′, i = 1, 2. Then

ker(π1(f?)) = Norπ1(S′,s′)({π1(p?1)(γ′′)π1(p?2)(γ′′)−1}γ′′∈π1(S′′,s′′)).

3.2 Specialization

3.2.1 Statements

Let S be a locally noetherian scheme and f : X → S a proper, geometrically connected morphism
with f∗OX = OS . Fix s0, s1 ∈ S with s0 ∈ {s1} and consider the following notation:

Ω1

x1

�� x1 ##GGGGGGGGG

x(1)

))RRRRRRRRRRRRRRRRRRR Ω0

x0

��x0
{{vvv

vv
vv

vv
v

x(0)

uukkkkkkkkkkkkkkkkkkk

X1
//

��
�

X1
//

��
�

X

��

X0
oo

��
�

X0
oo

��
�

k(s1) // k(s1) s1
// S k(s0)s0

oo k(s0),oo

where Ω0, Ω1 are algebraically closed fields. Also let s0, s1 denote the images of x0, x1 in S respec-
tively.

The theory of specialization of fundamental groups consists, essentially, in comparing π1(X1, x1)
and π1(X0, x0). The main result is the following.

Theorem 3.9 (Semi-continuity of fundamental groups) There exists a morphism of profinite groups

sp : π1(X1, x1)→ π1(X0, x0),

canonically defined up to inner automorphisms of π1(X0, x0). If, furthermore, f : X → S is separable,
then sp : π1(X1, x1)� π1(X0, x0) is an epimorphism.

The morphism sp : π1(X1, x1)→ π1(X0, x0) is called the specialization morphism from s1 to s0.

The proof of theorem 3.9 relies on the two following theorems. Let assume for a while that
S = Spec(A) with A a local complete noetherian ring and that s0 ∈ S is the closed point of S, s1 ∈ S
is any point of S.
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Theorem 3.10 (First homotopy sequence) The canonical sequence of profinite groups:

1→ π1(X0, x0)
i0→ π1(X,x(0)))

p0→ π1(S, s0)→ 1 (3)

is exact and the canonical morphism Γk(s0)→̃π1(S, s0) is an isomorphism.
If, furthermore, x0 ∈ X(k(s0)) (or is rational over a radiciel extension of k(s0)) then the above

short exact sequence splits.

Theorem 3.11 (Second homotopy sequence) Consider the following canonical sequence of profinite
groups:

π1(X1, x1)
i1→ π1(X,x(1))

p1→ π1(S, s1). (4)

Then p1 : π1(X,x(1))� π1(S, s1) is an epimorphism and Im(i1) ⊂ Ker(p1). If, furthermore, f : X →
S is separable then Im(i1) = Ker(p1).

Corollary 3.12 (Product) Let k be an algebraically closed field, X → k a connected, proper k-scheme
and Y → k a connected, locally noetherian k-scheme. Let x : Ω → X and y : Ω → Y be geometric
points. Then the canonical profinite group morphism

π1(X ×k Y, (x, y))→̃π1(X,x)× π1(Y, y)

is an isomorphism.

In particular, if Y = y : spec(Ω) → spec(k) then π1(X ×k,y Ω, x)→̃π1(X,x) is an isomorphism. In
other words, the etale fundamental group of a connected, proper k-scheme is invariant under base
extension by algebraically closed fields.

This is no longer true for non-proper schemes. Indeed, let k be an algebraically closed field of
characteristic p > 0. From the long cohomology exact sequence associated with Artin-Schreier short
exact sequence:

0→ Fp → Ga,k
P→ Ga,k → 0

one gets:

k[T ]/Pk[T ] = H0(A1
k,OA1

k
)/PH0(A1

k,OA1
k
)→̃H1

et(A1
k,Fp) = HomProGr(π1(A1

k, 0),Fp).

An additive section of the canonical epimorphism k[T ]� k[T ]/Pk[T ] is given by the representatives:∑
n>0,(n,p)=1

anT
n, an ∈ k,

which shows that π1(A1
k, 0) is not of finite type (compare with theorem 3.22) and depends on the base

field k.

Construction of the specialization morphism-1. Let assume, again, that S = Spec(A) with
A a local complete noetherian ring and that s0 ∈ S is the closed point of S, s1 ∈ S is any point of
S. Then one has the following canonical diagram of profinite groups, which commutes up to inner
automorphisms:
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(3) 1 // π1(X0, x0)
i0 // π1(X,x(0))

p0 // π1(S, s0) // 1

(4) π1(X1, x1)

∃! sp

OO

i1 // π1(X,x(1))

αX

OO

p1 // π1(S, s1) //

αS

OO

1,

where the vertical arrows αX : π1(X,x(1))→̃π1(X,x(0)) and αS : π1(S, s(1))→̃π1(S, s(0)) are the canon-
ical (up to inner automorphisms) isomorphisms of theorem 1.3.

Now, since p0 ◦ αX ◦ i1” = ”αS ◦ p1 ◦ i1
(∗)
= 0 (here ” = ” means equal up to inner automorphisms

and equality (∗) comes from theorem 3.11), one has Im(αX ◦ i1) ⊂ Ker(p0) = Im(i0) (by theorem 3.10)
and, hence, there exists a profinite group morphism:

sp : π1(X1, x1)→ π1(X0, x0),

unique up to inner automorphisms and such that αX ◦ p1” = ”i0 ◦ sp.

If, furthermore, Im(i1) = Ker(p1), a straightforward diagram chasing shows that sp : π1(X1, x1)�
π1(X0, x0) is an epimorphism.

Construction of the specialization morphism-2. We come back to the case where S is any
locally noetherian sheme and s0, s1 ∈ S with s0 ∈ {s1}. One then has the following canonical
commutative diagram:

k(s1) // k(s1)
s1 // S k(s0)

s0oo k(s0)oo

k(ŝ1) //

OO

k(ŝ1)
ŝ1

//

OO

spec(ÔS,s0)

OO

k(ŝ0)
ŝ0
oo k(ŝ0).oo

From the preceding §, one has a canonical specialization morphism:

sp : π1(X1 ×k(s1)
k(ŝ1), x̂1)→ π1(X0, x0)

and , from corollary 3.12, the canonical morphism π1(X1 ×k(s1)
k(ŝ1) x̂1)→̃π1(X1, x1) is an isomor-

phism.

The two next sections will be devoted to (sketch of) proofs of theorem 3.10, theorem 3.11 and
corollary 3.12.

3.2.2 First homotopy sequence

The proof resorts to deep results from [EGA3]; we will only sketch it but give references for the missing
details.

Step 1: Assuming that A is a local artinian ring, the conclusions of theorem 3.10 hold.
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Recall that, in an Artin ring, any prime ideal is maximal hence the nilradical and the Jacobson
radical coincide. In particular, if A is local, the nilpotent elements of A are precisely those of its
maximal ideal. From theorem 3.2, one may thus assume that A = k(s0) and, then, the conclusion
π1(S, s0) ' Γk(s0) is straightforward. Let k(s0)i denote the inseparable closure of k(s0) in k(s0) and
Xi

0 := X ×S k(s0)i. Then the cartesian diagram:

X0
//

�

X //

�

S

X0
// Xi

0

OO

// Spec(k(s0)i)

OO (5)

induces a commutative diagram of profinite group morphisms:

π1(X0, x0) // π1(X,x(0)) // π1(S, s0)

π1(X0, x0) //

OO

π1(Xi
0, x

i
(0)) //

OO

π1(Spec(k(s0)i), si0)

OO
(6)

Now, since each of the vertical arrows in (5) is faithfully flat, quasi-compact and radiciel, it follows
from corollary 3.4 that the vertical arrows in (6) are profinite group isomorphisms. Hence it is enough
to prove that the bottom line of (6) is exact that is one may assume that k(s0) is perfect.

But, then, k(s0) can be written as the inductive limit of its finite Galois subextensions {k(s0) ↪→
ki}i∈I hence, writing Xi := X ×S ki and xi for the image of x0 in Xi, the base change functor
lim
−→

RetXi ≈ R
et
X is an equivalence of categories hence induces a profinite group isomorphism

π1(X0, x0)→̃lim
←−

π1(Xi, xi).

But, for each i ∈ I, Xi → X ∈ RetX is Galois with group Gal(ki|k(s0)) so, from proposition 1.19 one
has a short exact sequence of profinite groups:

1→ π1(Xi, xi)→ π1(X,x(0))→ Gal(ki|k(s0))→ 1.

Using that the projective limit functor is exact in the category of profinite groups, we thus get the
expected short exact sequence of profinite groups:

1→ lim
←−

π1(Xi, xi)→ π1(X,x(0))→ Γk(s0) → 1.

Remark 3.13 The above (with A = k a field) shows that the statement of proposition 2.13 remains true without
the assumption that k is perfect.

Step 2: The closed immersion iX0 : X0 ↪→ X induces an equivalence of categories RetX ≈ RetX0
. In

particular, one has a canonical profinite groups isomorphism π1(X0, x0)→̃π1(X,x(0)).

One has to prove that:
(i) For any p : Y → X, p′ : Y ′ → X ∈ RetX the canonical map

HomRetX
(p, p′)→ HomRetX0

(p×X X0, p
′ ×X X0)
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is an isomorphism and
(ii) For any p0 : Y0 → X0 ∈ RetX0

there exists p : Y → X ∈ RetX such that p×X X0→̃p0 in RetX0
.

The proof of (i) and (ii) is based on Grothendieck’s Comparison and Existence theorems in
algebraico-formal geometry. We first state simplified versions of these theorems.

Let S be a noetherian scheme and p : X → S be a proper morphism. Let I ⊂ OS be a coherent
sheaf of ideals. Then the descending chains · · · ⊂ In+1 ⊂ In ⊂ · · · ⊂ I corresponds to a chain of
closed subschemes S0 ↪→ S1 ↪→ · · · ↪→ Sn ↪→ · · · ↪→ S. We will use the notation in the diagram below:

S

�

Sn? _oo

�

· · ·? _oo S1
? _oo

�

S0
? _oo

X

p

OO

Xn
? _oo

pn

OO

· · ·? _oo X1
? _oo

p1

OO

X0.? _oo

p0

OO

For any coherent OX -module F , set Fn := p∗nF = F ⊗OX OXn , n ≥ 0. Then Fn is a coherent OXn-
module and the canonical OX -module morphim F → Fn induces OS-module morphisms Rqp∗F →
Rqp∗Fn, q ≥ 0 hence OSn-module morphisms:

(Rqp∗F)⊗OS OXn → Rqp∗Fn, q ≥ 0

and, taking projective limit, canonical morphisms:

lim
←−

(Rqp∗F)⊗OS OXn → lim
←−

Rqp∗Fn, q ≥ 0.

When S = spec(A) is affine and I ⊂ A is the ideal corresponding to I ⊂ OS , the above isomorphism
become:

Hq(X,F)⊗A Â→̃ lim
←−

Hq(Xn,Fn), q ≥ 0,

where Â denotes the completion of A with respect to the I-adic topology.

Theorem 3.14 (Comparison theorem [EGA3, (4.1.5)]) The canonical morphisms:

lim
←−

(Rqp∗F)⊗OS OXn→̃ lim
←−

Rqp∗Fn, q ≥ 0

are isomorphisms.

Theorem 3.15 (Existence theorem [EGA3, (5.1.4)]) Assume, furthermore that S = spec(A) is affine
and that A is complete with respect to the I-adic topology. Let Fn, n ≥ 0 be coherent OXn-modules
such that Fn+1 ⊗OXn+1

OXn→̃Fn, n ≥ 0. Then there exists a coherent OX-module F such that
F ⊗OX OXn→̃Fn, n ≥ 0.

For any p : Y → X ∈ RetX , recall that A(p) := f∗OY is a locally free OX -algebra of finite rank and
that the functor

A : RetX → FLFAOX
p : Y → X → A(p)

is fully faithful.
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-Proof of (i): Let M denote the maximal ideal of A and, for any n ≥ 0, write An := A/Mn+1. Then
one has canonical functorial isomorphisms:

HomRetX
(p, p′) →̃ H0(X,HomFLFAOX

(A(p′),A(p)))
→̃ lim

←−
H0(Xn,HomFLFAOX

(A(p′),A(p))⊗OX OXn),

where the first isomorphism comes from the fact that A is fully faithful and the second isomorphism is
just the comparison theorem applied to q = 0, F = HomFLFAOX

(A(p′),A(p)) and I =M, observing

that, since A is complete with respect to the M-adic topology, A = Â.

Furthermore, as A(p), A(p′) are locally free OX -module, one has canonical isomorphisms:

HomOX−Mod(A(p′),A(p))⊗OX OXn→̃HomOXn−Mod(A(p′n),A(pn))

But these preserve the structure of OX -algebra morphisms hence one also gets, by restriction:

HomFLFAOX
(A(p′),A(p))⊗OX OXn→̃HomFLFAOXn

(A(p′n),A(pn)).

Whence,
HomRetX

(p, p′) →̃ lim
←−

H0(Xn,HomFLFAOX
(A(p′),A(p))⊗OX OXn)

→̃ lim
←−

H0(Xn,HomFLFAOXn
(A(p′n),A(pn)))

→̃ lim
←−

HomRetXn
(pn, p′n)

→̃ lim
←−

HomRetX0
(p0, p

′
0),

where the last isomorphism comes from the fact HomRetXn
(pn, p′n)→̃HomRetX0

(p0, p
′
0), n ≥ 0 by theorem

3.2.

-Proof of (ii): By theorem 3.2, there exists pn : Yn → Xn ∈ RetXn , n ≥ 0 such that pn→̃pn+1×Xn+1 Xn,
or, equivalently, A(pn+1) ⊗OXn+1

OXn→̃A(pn), n ≥ 0. So, by the Existence theorem, there exists
A ∈ FLFAOX such that A ⊗OXn OX→̃A(pn), n ≥ 0 hence, setting p : Y = spec (A) → X one has
p×X X0→̃p0.

Claim: One has p : Y = spec (A)→ X ∈ RetX .

See [Mur67, p. 159-161].

Step 3: From step 1 applied to A = k(s0), X = X0, one gets the short exact sequence of profinite
groups:

1→ π1(X0, x0)→ π1(X0, x0)→ Γk(s0) → 1.

Now, from step 2 one has the canonical profinite group isomorphisms π1(X,x)→̃π1(x0, x0) and (for
X = S) π1(S, s0)→̃Γk(s0), which yields the required short exact sequence.

Eventually, for the last assertion of theorem 3.10, just observe that, as above, one can assume that
A = k(s0) thus, if x ∈ X(k(s0)), it produces a section x : S → X of f : X → S such that x ◦ s0 = x
thus a section Γk(s0) → π1(X,x) of (3). �
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3.2.3 Second homotopy sequence

Technical preliminaries. Let k be a field. A k-scheme X is separable over k if, for any field ex-
tension K/k, X ×k K is reduced. This is equivalent to requiring that X be reduced and that, for
any generic point η ∈ X, the extension k(η)/k be separable (thus, if k is perfect, this is equivalent to
requiring that X be reduced). Let S be a scheme. A S-scheme X → S is separable over S if X → S
is flat over S and for any s ∈ S, X ×S,s k(s) is separable over k(s).

Note that:
- Any base change of a separable morphism is separable.
- If X → S is separable over S and X ′ → X is etale over X then X ′ → S is separable over S.

Theorem 3.16 (Stein factorization of a proper morphism) Let S be a locally noetherian scheme
and f : X → S be a morphism. Then the coherent OS-algebra f∗OX defines a S-scheme p : S′ =
spec(f∗OX)→ S and f : X → S fators canonically as:

S S′
poo

X.

f

OO

f ′

>>||||||||

Furthermore,
- If f : X → S is proper then p : S′ = spec(f∗OX) → S is finite and f ′ : X → S′ is proper and
geometrically connected;
- If f : X → S is proper and separable then p : S′ = spec(f∗OX)→ S ∈ RetS .

Corollary 3.17 Let S be a locally noetherian scheme and f : X → S be a proper morphism with

Stein factorization X
f ′→ S′

p→ S. Then,
- If f : X → S is proper then for any s ∈ S, the connected components of X ×f,S,s k(s) are one-to-one
with the finite set of points above s and the connected components of X×f,S,s k(s) are one-to-one with
the finite set of geometric points above s. In particular, if f∗OX = OS then X is connected.
- If f : X → S is proper and separable then f∗OX = OS if and only if f : X → S is geometrically
connected.

Proof. Exactness on the right.

Lemma 3.18 (Flat base change) Let f : X → S be a proper morphism and let F a coherent OX-
module. Then for any cartesian diagram:

X ′
π′ //

f ′

��
�

X

f

��
S′ π

// S

with π : S′ → S flat over S, one has canonical isomorphisms:

cn : π∗Rqf∗(F)→̃Rqf ′∗(π
′∗F), q ≥ 0
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In particular, for any π : S′ → S ∈ RetS with S′ connected, one has:

f ′∗(OX′) = f ′∗(π
∗
XOX)

(1)
= π∗f∗OX

(2)
= π∗OS = OS′ ,

where (1) results from the flatness of π : S′ → S and lemma 3.18 whereas (2) results from the
assumption f∗OX = OS . Now, as f ′ : X ′ → S′ is proper, it follows from corollary 3.17 that X ′ is
connected.
Exactness in the middle.
- ker(p1) ⊃ im(i1): Let π : S′ → S ∈ RetS and consider the following notation:

S
′
1

//

�
��

S′(1)
//

�

��

S′

��
X1

//

!!DD
DD

DD
DD

X // S

OO

k(s1)

==|||||||||
�

.

Then
S
′
1 = X1 ×S S′ = (X ×S,s1 k(s1))×S S′

= X ×S (k(s1))×s1,S S′)
= X ×S

∐
finite

k(s1))

=
∐
finite

X1.

- ker(p1) ⊂ im(i1): Let π : X ′ → X ∈ RetX with X ′ connected. Consider the following notation:

X
′
1

π //

�

X
f //

�

S

X
′
1 π1

//

OO

X1
//

OO

k(s1)

OO

and assume that there exists a section σ : X1 → X
′
1 of π1 : X ′1 → X1.

Since π : X ′ → X is etale and f : X → S is proper and separable, g := f ◦ π : X ′ → S is also

proper and separable. Consider its Stein factorization X ′
g′→ S′

p→ S. From theorem 3.16, p : S′ → S
is etale over S. Consider now the following commutative diagram:

X ′

α

��
g′

��

π

}}||
||

||
||

X

f

��
�

X ′′prX
oo

f ′

��
S S′p

oo

. (7)

Then α : X→̃X ′′ is an isomorphism. Indeed,
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(i) Since any base change of an etale morphism is again etale, prX : X ′′ → X is etale. Also, by
hypothesis, π:X

′ → X is etale hence α : X → X ′′ is etale.

(ii) Since X ′ is connected and g′ : X ′ → S′ is surjective, S′ is also connected. But then, it follows
from the surjectivity of p1 : π1(X,x(1))� π1(S, s1) that X ′′ is also connected.

(iii) We now base change (7) via s1 : k(s1)→ S.

X
′
1

α1

��
g′1

��

π1

}}{{
{{

{{
{{

X1

f1

��
�

σ
//

X
′′
1prX 1

oo

f ′1
��

k(s1) S
′
1p1

oo

. (8)

Since p : S′ → S is an etale cover, S′1 =
∐
S
′
s

spec(k(s1)) hence X ′′1 =
∐
S
′
s

X1. Since X1 is connected

and σ : X1 → X
′
1 is etale hence maps connected components to connected components, σ(X1) = Y ′

is a connected component of X ′1. Again, since α1 : X ′1 → X
′′
1 is etale, α1(Y ′) is one of the connected

component Y ′′ ' X1 of X ′1. Eventually, since prX 1|Y ′′ : Y ′′→̃X1 is an isomorphism, one gets that
α1|Y ′ : Y ′→̃Y ′′ is an isomorphism with inverse σ◦prX 1|Y ′′ : Y ′′′→̃Y ′. Now, |π0(X

′
1)| = |π0(X

′′
1)| = |S

′
1|

and α1 : X ′1 → X1 is surjective (since it is both closed and open and (X ′′1 is connected) and etale
so it induces a bijection π0(X

′
1)→̃π0(X

′′
1) and, in particular, for any y′′ ∈ Y ′′ |α−1

s (y′′)| = 1. So
α : X ′ → X ′′ has rank 1 at y′′.

Combining (i), (ii) and (iii), one gets that α : X ′→̃X ′′ is an isomorphism. �

As a result, α−1 ∈ HomRetX
(prX , π) as required.

Remark 3.19 The assumption f∗OX = OS can be omitted and the conclusion of theorem ?? then becomes that the
following canonical exact sequence of profinite groups is exact:

π1(X1, x1)
i1→ π1(X, x(1))

p1→ π1(S, s1) → π0(X1) → π0(X) → π0(S) → 1

Proof of corollary 3.12.

Lemma 3.20 X ×k Y is connected.

Proof. Since the question is purely topological, one may assume thatX = Xred thus thatX → k is sep-
arable. As p2 : X×kY → Y is proper (sinceX → k is) and surjective and as Y is connected, it is enough
to prove that the fibres of p2 : X ×k Y → Y are connected. For this, it is enough to show that for any
field extension K/k, X×kK is connected. Since X is reduced, connected and k is algebraically closed,
one has H0(X,OX) = k (Stein factorization) hence, H0(X×kK,OX×kK) = H0(X,OX)⊗kK = K (flat
base change) but, as X×kK is reduced, this implies that X×kK is connected (Stein factorization). �

From theorem 3.2, the closed immersion Xred ↪→ X induces an equivalence of categories RetX ≈
Ret
Xred so one can assume that X = Xred thus that X → k is separable.
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Since X → k is proper and separable, by base change, p2 : X×kY → Y is also proper and separable
and, as already noticed, geometrically connected. It then follows from the cartesian diagram:

Ω
(a,b)// XΩ ×Ω Y

p2 // Y

Ω

OO

a
//

�

XΩ

OO

//

�

Ω

b

OO

and from theorem 3.11 that one has a canonical exact sequence of profinite groups:

π1(XΩ, a)→ π1(XΩ ×Ω Y, (a, b))→ π1(Y, b)→ 1.

Then, the composite XΩ ↪→ XΩ×Ω Y
p1→ XΩ is the identity hence π1(XΩ, a)→ π1(XΩ×Ω Y, (a, b))

admits a continuous group theoretic section and, in particular, is injective. So, actually, one gets a
split short exact sequence of profinite groups:

1→ π1(XΩ, a)→ π1(XΩ ×Ω Y, (a, b))→ π1(Y, b)→ 1.

Thus the conclusion will follow from:

Lemma 3.21 The canonical morphism π1(XΩ, aΩ)→̃π1(X, a) is an isomorphism.

Proof. First, from lemma 3.20 for Y = spec(Ω), XΩ is connected. Similarly, for any π : X ′ → X ∈ RetX
with X ′ connected, X ′ → k is proper (as the composite of a finite morphism with a proper morphism)
hence, X ′Ω is connected as well, which shows that π1(XΩ, a)� π1(X, a) is an epimorphism. So, it only
remains to prove that for any π : X ′Ω → XΩ ∈ RetXΩ

, there exists π : X ′ → X ∈ RetX such that π×kΩ→̃π.
First, one can always find a k-subalgebra A ⊂ Ω of finite type over k and πA : X ′A → XA ∈ RetXA
such that πA ×A Ω→̃π. Set Y := spec(A) (hence XA = X ×k Y ); since Y → k is of finite type and k
is algebraically closed, one can always find bk ∈ Y such that k(bk) = k. Also, since the fundamental
group does not depend on the fibre functor, one can assume that k(a) = k. Then, from the above,
one gets the canonical profinite group isomorphism:

π1(X ×k Y, (a, bk))→̃π1(X, a)× π1(Y, bk).

Let U ⊂ π1(X ×k Y, (a, bk)) be the open subgroup corresponding to πA : X ′A → X ×k Y ∈ RetX×kY .
Then consider two open normal subgroups UX C π1(X, a), UY C π1(Y, bk) such that UX × UY ⊂ U .
UX C π1(X, a), UY C π1(Y, bk) correspond to Galois covers π̂1 : X̂ → X ∈ RetX and π̂2 : Ŷ → Y ∈ RetY
respectively and πA : X ′A → X ×k Y ∈ RetX×kY is a quotient of π̂1×k π̂2 : X̂ ×k Ŷ → X ×k Y . Consider
now the following cartesian diagram:

X̂ ×k Ŷ

ttiiiiiiiiiiiiiiiiiiiiii

yy

����
��

��
��

��
��

��
��

�

X ′A

�
��

X ′′A

��

oo

X ×k Y X ×k Ŷoo
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and let y ∈ Y be the generic point of Y . Since k(y) ⊂ Ω and Ω is algebraically closed, one may assume
that for any point ŷ ∈ Ŷ above y ∈ Y , k(ŷ) ⊂ Ω and that one has the cartesian diagram:

X ′′A

�
��

X ′Ω

��

oo

X ×k Ŷ (X ×k Ŷ )×ŷ,κ(ŷ) Ω ' X ×k Ω.oo

Thus, as X ′Ω is connected, so is X ′′A, from which it follows in particular that X̂ ×k Ŷ → X ′′A is sur-
jective and that X ′′A → X ×k Ŷ corresponds to an open subgroup V ⊂ π1(X ×k Ŷ ) = π1(X) × UY
containing π1(X̂ ×k Ŷ ) = UX × UY . Hence X ′′A → X ×k Ŷ is of the form X ′ ×k Ŷ → X ×k Ŷ
for some π : X ′ → X ∈ RetX . Now, on the one hand (X ′′A)ŷ→̃X ′ ×k k(ŷ) and, on the other hand,
X ′Ω→̃X ′A ×Y Ω→̃(X ′A)y ×k(y) Ω→̃(X ′′A)ŷ ×k(ŷ) Ω ' X ′ ×k Ω. �

3.2.4 Proper schemes over algebraically closed fields

Let k be an algebraically closed field and X → k a proper morphism with X connected. Then:

Theorem 3.22 For any geometric point x ∈ X, π1(X,x) is finitely generated.

Proof. The proof is by induction on dim(X) = d.

1. Reduction to the case where X is connected, normal and projective over k. The main argument
is Chow’s lemma [EGA2, Cor. 5.6.2], which state that for any scheme X proper over a noethe-
rian scheme S there exists a scheme X̃S projective over S and a surjective birational morphism

X̃ → X. Write X̃red ↪→ X̃ for the underlying reduced closed subscheme and X̃
red
→ X̃red for its

normalization. The resulting morphism X̃
red
→ X is then surjective and proper as the compos-

ite of three surjective and proper morphisms. (Indeed, the surjectivity is straigtforward. As for
the properness: since both X and X̃ are proper over k, so is the morphism X̃ → X, X̃red ↪→ X̃

is a closed immersion, hence is proper and since X̃red is of finite type over k, X̃
red
→ X̃red is

finite hence proper). In our situation, all the schemes have finitely many connected components

so, by theorem 3.5 and corollary 3.7 it only remains to prove that π1(X̃
red
, x) is topologically of

finite type.

So, now, assume that X is connected, normal and projective over k.

2. d = 0, 1. If d = 0, there is nothing to prove. If d = 1, let Q denote the prime field of k. Since
X → k is of finite type, there exists a subextension Q ↪→ k0 of Q ↪→ k with transcdeg(k0|Q) <
+∞ and a k0-curve X0 such that

X

�
��

// X0

��
k // k0.
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-char(Q) = 0. As transcdeg(k0|Q) < +∞, one can find a field embedding k0 ↪→ C hence, from
lemma 3.21,

π1(X) ' π1(X0 ×k0 k) ' π1(X0 ×k0 k0) ' π1(X0 ×k0 C).

So, one can assume that k = C. It then follows from example 2.22 that one gets a profinite
group isomorphism:

π1(X)→̃Γ̂g,0,

where g denotes the genus of X.

-char(Q) = p > 0. Let W (k) be the ring of Witt vectors over k; it is a complete discrete valuation
ring with residue field k and fraction field K of characteristic 0. Then there exists a smooth
projective W (k)-scheme W (X)→W (k) such that

X

�
��

// W (X)

��
k // W (k).

So, if s1 and s0 denote the generic and closed points of spec(W (k)) respectively, one gets with
the notation of theorem 3.9, a profinite group epimorphism:

sp : π1(W (X)1)� π1(W (X)0 = X).

But W (X)1 → K is also a K-curve of genus g, hence one has constructed a profinite group
epimorphism:

sp : Γ̂g,0 � π1(W (X)0 = X).

This proves the d = 1 case.

3. d =≥ 2. Let X ↪→ Pnk be a closed immersion and let H ↪→ Pnk be an hyperplane such that X 6⊂ H
then the corresponding hyperplane section X ·H (regarded as a scheme with the induced reduced
scheme structure) has dimension ≤ d− 1 thus the conclusion will follow from:

Lemma 3.23 Let X be scheme proper over k, irreducible and normal and let f : X → Pnk
be a k-morphism such that dim(g(X)) ≥ 2. Then, for any hyperplane H ↪→ Pnk the scheme
Y := X×f,Pnk H is connected and for any finite connected etale cover X ′ → X, the induced finite
etale cover Y ′ := X ′×X Y → Y is again connected. In other words, the canonical profinite group
morphism π1(Y, y)→ π1(X,x) is an epimorphism.

Proof of the lemma. Since X is normal, X ′ is normal as well hence, being connected, it is
also irreducible. Thus, if H is the generic hyperplane of Pnk (defined over K = k(T0, . . . , Tn))
then it follows from Bertini theorem that X ′K ×PnK H is universally irreducible hence, universally
connected over K but then, it follows from Zariski connexion theorem that for any hyperplane
H ↪→ Pnk (defined over any extension k(H) of k) that X ′k(H)×Pn

k(H)
H is geometrically connected

over k(H). �

Corollary 3.24 For any finite group G there are only finitely many isomorphism classes of p : X ′ →
X ∈ RetX Galois such that AutRetX (p) = G.
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3.3 Purity and applications

3.3.1 The purity theorem and aplications

Theorem 3.25 (Zariski-Nagata purity theorem) Let X, Y be integral schemes with X normal and Y
regular and locally noetherian. Let f : X → Y be a quasi-finite dominant morphism and let Zf ⊂ X
denote the closed subset of all x ∈ X such that f : X → Y is not etale at x. Then, either Zf = X or
Zf is pure of codimension 1 (that is, for any generic point η ∈ Z, dim(OX,η) = 1).

Corollary 3.26 Let X be a connected, regular, locally noetherian scheme and let U ⊂ X be an open
subset such that X \ U has codimension ≥ 2 in X. Then the open immersion U ↪→ X induces an
equivalence of categories RetX ≈ RetU . In particular, for any geometric point x ∈ U , the canonical
morphism

π1(U, x)→̃π1(X,x)

is an isomorphism.

Proof. As X is connected and regular (hence normal), X is irreducible. Since X is normal and X \U ⊂
X is a closed subset of codimension ≥ 2, the restriction functor Modloclib(OX) → Modloclib(OU ) is
fully faithfull hence, one only has to prove that for any finite etale cover pU : V → U there exists a
(necessarilly unique by the above) finite etale cover p : Y → X such that

V //

pU
��

�

Y

p

��
U // X

One may assume that V is connected hence, being normal (since U is), irreducible. So V is the
normalization of U in k(X) = k(U) ↪→ k(V ). Let p : Y → X be the normalization of X in k(X) ↪→
k(V ). Then, on the one hand,

V //

pU
��

�

Y

p

��
U // X

and, on the other hand, since X is normal and k(X) ↪→ k(V ) is a finite separable field extension,
p : Y → X is finite, dominant and etale on p−1(U) = V = Y \p−1(X \U). But X \U has codimension
≥ 2 in X hence, since p : Y → X is finite, p−1(X \ U) has codimension ≥ 2 in Y as well. Thus, from
theorem 3.25 p : Y → X is etale. �

Now, let X be a locally noetherian regular scheme and f : X  Y be a rational map. Write
Uf ⊂ X for the maximal open subset on which f : X  Y is defined and assume that X \ Uf has
codimension ≥ 2 in X. Then, one has the canonical functors:

RetY → RetUf ≈ R
et
X

and, correspondingly, for any geometric point x ∈ Uf , profinite group morphisms:

π1(X,x)→̃π1(Uf , x)→ π1(Y, f(x)).

Thus, if one consider the category C of all connected, locally noetherian, regular schemes pointed
by geometric points in codimension 1 together with dominant rational maps defined on an open
subscheme whose complement has codimension ≥ 2, one gets a well defined functor π1(−) : C →
ProGr, (X,x) 7→ π1(X,x). In particular,
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Corollary 3.27 (Birational invariance of fundamental groups) Let k be a field, X, Y two schemes
proper over k and regular and f : X! Y a birational k-map. Then, for any geometric point x ∈ Uf
one has the canonical profinite group isomorphisms

π1(X,x)→̃π1(Uf , x)→̃π1(Uf−1 , f(x))→̃π1(Y, f(x)).

Proof. If k is a field, X a normal k-scheme and Y a scheme proper over k then any rational k-map
f : X  Y is defined over an open subset Uf ⊂ X such that X \ Uf has codimension ≥ 2. Thus the
claim follows from corollary 3.26. �

Example 3.28 Let k be any field and consider the blowing-up f : Bx → P2
k of P2

k at any point x ∈ P2
k. Then for any

geometric point b ∈ Bx:
π1(X, b)→̃π1(P2

k, f(b)).

However, Bx and P2
k are not k-isomorphic (any two curves P2

k intersects whereas the exceptional divisor E in Bx does not
intersect the inverse images of the curves in P2

k passing away from x). The above result is straightfroward in characteristic
0 since, combining Riemann Existence Theorem, specialization theory and the short exact sequence for geometrically
connected schemes over fields, one gets : π1(X, x)→̃π1(P2

k, f(b))→̃Γk. But it is not in positive charactaristic and shows,
in particular, the complexity of higher dimensional anabelian geometry.

3.3.2 Kernel of the specialization morphism

Ramification Recall that if (O,M) is a discrete valuation ring with fraction field K = Frac(O) and
residue field k = O/M and if L/K is a finite Galois extension then the integral closure ÕL of O in L
is a free O-module of rank n = [L : K]. For any maximal ideal ML of ÕL write kML

:= ÕL/ML for
the residue extension and:

DL/K(ML) := {σ ∈ Gal(L|K) | σ(ML) =ML}

for the decomposition group ofML in L/K. Thus we have a canonical group epimorphismDL/K(ML)�
Gal(kML

|k) whose kernel is the inertia group of ML in L/K and denoted by IL/K(ML). Since
Gal(L|K) acts transitively on the maximal ideals of ÕL, the DL/K(ML) (resp. the IL/K(ML)) form
a whole conjugacy class DL/K(O) (resp. IL/K(O)) of subgroups of Gal(L|K) so we will simply write
DL/K(O) (resp. IL/K(O)) for a representative of DL/K(O) (resp. IL/K(O)). One says that L/K is
tamely ramified over O if eL|K(O) := |IL/K(O)| is prime to the characteristic of k and that L/K is
unramified over O if eL|K(O) = 1. We then have the following elementary properties:

Lemma 3.29 Let π denote a uniformizing parameter of M.

1. If L/K is tamely ramified over O then the canonical morphism

θ0 : IL/K(ML) ↪→ (ÕL)?, σ 7→ σ(π)
π

modML

is a monomorphism and induces an isomorphism θ0 : IL/K(M)→̃µeL|K(O)(K). In particular,
IL/K(ML) is cyclic.

2. (Transitivity) Let K ⊂ L ⊂ M be finite field extensions with L/K and M/K Galois. Let MM

be a maximal ideal of ÕM and ML :=MM ∩ ÕL. Then one has a commutative diagram with
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exact rows and columns:

1

��

1

��

1

��
1 // IM/L(MM ) //

��

IM/K(MM ) //

��

IL/K(ML) //

��

1

1 // DM/L(MM ) //

��

DM/K(MM ) //

��

DL/K(ML) //

��

1

1 // Gal(M |L) //

��

Gal(M |K) //

��

Gal(L|K) //

��

1

1 1 1

3. (Abhyankar’s lemma) Let L/K and M/K be two finite Galois extensions tamely ramified over O and
assume that eL|K(O)|eM |K(O). Then, for any maximal ideal ML of ÕL, L.M is unramified over ÕL

ML
.

Example 3.30 Let π ∈ M be a uniformizing parameter and n ≥ 1 an integer prime to the characteristic of k.
Assume that K contains the nth roots of unity. Then L := K[X]/ < Xn − π > is a finite Galois extension, tamely
ramified over O and with Galois group IL/K(O) ' Z/n.

Kernel of the specialization morphism We retain the notation of §3.2. Let S be a locally
noetherian scheme and f : X → S a smooth, proper, geometrically connected morphism; our aim
is to try and describe the kernel of the specialization epimorphism π1(X1, x1)� π1(X0, x0).

Theorem 3.31 For any finite group G of order prime to the residue characteristic p of S at s0 and
for any profinite group epimorphism φ : π1(X1, x1) � G there exists a profinite group epimorphism
φ0 : π1(X0, x0)� G such that φ0 ◦ sp = φ. In particular, sp induces a profinite group isomorphism

sp(p′) : π1(X1, x1)(p
′) � π1(X0, x0)(p

′),

where (−)(p
′) denotes the prime-to-p profinite completion.

Proof. As one can always find a complete discrete valuation ring A with algebraically closed residue
field and a morphism spec(A) → S sending the generic point of spec(A) to s1 and the closed point
of spec(A) to s0, one may assume without loss of generality that S = spec(A). Let K and k denote
the fraction field and residue field of A respectively and let K ↪→ K be an algebraic closure of K
and K ↪→ Ks the separable closure of K in K ↪→ K. For any subring A ⊂ B ⊂ K, we will write
XB := X ×A B. For instance, X = XA, X1 = XK , X1 = XK , X0 = X0 = XK etc.

Since the canonical morphism spec(K) → spec(Ks) is faithfully flat, quasi-compact and radiciel,
it follows from corollary 3.4 that the canonical profinite group morphism π1(XK , x1)→̃π1(XKs , xs1) is
an isomorphism. Also, it follows from step 2 of the proof of theorem 3.10 that the canonical profinite
group morphism π1(X0, x0)→̃π1(X,x(0)) is an isomorphism. Hence we are to determine the kernel of
π1(XKs , xs1)� π1(X,x(0)) or, equivalently, to solve:
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Problem: Given fs : Y s → XKs ∈ RetXKs Galois with group G, when can we say that there exists
f : Y → X ∈ RetX Galois with group G such that:

Y s

fs

��

//

�

Y

f

��
XKs // X

?

Since Ks is the inductive limit of the finite extensions of K contained in Ks, there exists a finite
separable extension K ↪→ K1 and a finite etale Galois cover f1 : Y1 → XK1 ∈ RetXK1

such that:

Y s

fs

��

//

�

Y1

f1
��

XKs // XK1 .

Thus the problem becomes:

Problem: When does there exist a finite etale Galois cover f : Y → X ∈ RetX and a finite separable
extension K1 ↪→ K2 such that:

Y1K2

f1K2

��

//

�

Y

f

��
XK2

// X

?

But, given any finite separable extension L/K the integral closure ÃL of A in L/K is again a
complete discete valuation ring with residue field k. Hence, considering the cartesian square:

XÃL
//

��
�

X

��
spec(ÃL) // spec(A)

Writing (XÃL)0 for the closed fibre of XÃL , XÃL → X induces an isomorphism (XÃL)0→̃X0, whence
the canonical profinite group isomorphisms:

π1(XÃL , x
L
(0))→̃π1((XÃL)0, xL0 )→̃π1(X0, x0)→̃π1(X,x(0)).

So, the problem can now be reformulated as:

Problem: When does there exist a finite separable extension K1 ↪→ K2 and f : Y → XÃK2 ∈ RetX
ÃK2

Galois such that:
Y1K2

f1K2

��

//

�

Y

f
��

XK2
// XÃK2

?

For any finite extension L/K, fÃL : XÃL → spec(ÃL) is smooth so XÃL is regular. In particular,
since (XÃL)0 is an irreducible (normal and connected) closed subscheme of codimension 1 (flatness),
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its local ring OX,L := OX
ÃL

,(X
ÃL

)0 is a discrete valuation ring with fraction field L and residue field
k(X0) (hence of characteristic p). Also, XÃL being regular, hence normal, and connected is also irre-
ducible thus let RL denote its ring of rational functions. But, then, it follows from theorem 3.25 (and
theorem 2.10) that finite etale Galois covers f : Y → XÃL ∈ R

et
X
ÃL

correspond to finite Galois field
extensions RL ↪→ SL ∈ FSARL unramified over OX,L.

With these notation, let u1 be a uniformizing paramater for ÃK1 hence for OX,K1 and n ≥ 1 a
prime-to-p integer. SetK2 := K1[T ]/ < Tn−u > /K1 then RK2 = RK1⊗K1K2 = RK1 [T ]/ < Tn−u1 >
and, in particular RK1 ↪→ RK2 is tamely ramified over OX,K1 . If we assume that G is of prime-to-p
order then RK1 ↪→ SK1 is also tamely ramified over OX,K1 . So, if we choose n ≥ 1 prime-to-p and
multiple of the order of the inertia group of RK1 ↪→ SK1 over OX,K1 (e.g. n = |G|) then it follows
from lemma 3.29 (3) that RK2 ↪→ SK2 = SK1 ⊗RK1

RK2 is unramified over OX,K2 (in other words,
f1K2 : Y1K2 → XK2 extends to a finite etale Galois cover f : Y → XÃK2 ∈ RetX

ÃK2
. �

3.4 Fundamental groups of curves: a short review.

Let k be a field of characteristic p ≥ 0 and let X be a geometrically connected curve over k. Fix a
geometric point x : spec(Ω) → Xk with image x : spec(Ω) → X and s : spec(Ω) → spec(k).Then the
structural morphism X → k induces the canonical short exact sequence of profinite groups (2):

1→ π1(Xk, x)→ π1(X,x)→ π1(spec(k), s)→ 1.

Any point in X(k) produces (a conjugacy class of) splitting(s) of (2) but, even if X(k) = ∅, one has a
well-defined action ρ : Γk → Out(π1(Xk, x)).

If X is normal and x, x are geometric generic points, the short exact sequence (2) can be rewritten
in terms of usual Galois groups. Indeed, letMX/k(X) (resp. MXk

/k(X)) denote the maximal algebraic
extension of k(X) (resp. k(X)) unramified over X (resp. Xk) in Ω. Then (2) becomes:

1→ Gal(MXk
|k(X))→ Gal(MX |k(X))→ Γk → 1.

So, to understand the ”arithmetic fundamental group” π1(X), one should first try to describe the
”geometric dundamental group” π1(Xk) and the outer Galois representation ρ : Γk → Out(π1(Xk)).
We sum-up below the main classical results about these when X is a smooth, geometrically connected
k-curve X of type (g, r).

3.4.1 Proper curves

As already mentioned in step 2 of the proof of theorem 3.22,
- If char(k) = 0 then one has a profinite group isomorphism Γ̂g,0→̃π1(Xk);
- If char(k) = p > 0 then one has a profinite group epimorphism Γ̂g,0 � π1(Xk), which, according to
theorem 3.31, induces an isomorphism on the prime-to-p completions Γ̂(p)′

g,0 →̃π1(Xk)
(p)′ .

These results extend to non necessarily proper curves of type (g, r).

3.5 Curves of type (g, r)

A smooth, geometrically connected k-curve X is said to be of type (g, r) if, writing X ↪→ X̃ for the
smooth compactification of X, g is the genus of X̃ and r is the degree over k of the reduced divi-
sor DX := X̃ \ X. A k-curve X of type (g, r) is said to be hyperbolic if it has Euler characteristic
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2− 2g − r < 0 (that is (g, r) 6= (0, 0), (0, 1), (0, 2), (1, 0)) or, equivalently, if AutSch/k(Xk) is finite.

We sum up below, without proof, the main statements about smooth, geometrically connected
k-curves of type (g, r). For proofs and extension to higner dimensional schemes, we refer to [GM71].

Write DX(k) = {t1, . . . , tr}.

1. p = 0. As X is of finite type over k, one can assume that k is finitely generated over Q and any
fields embedding k ↪→ C induces an equivalence of categories RetXk ≈ RetXC

. From Rieman exis-
tence theorem, one gets an equivalence of categories RetXk ≈ RetXan

C
whence a canonical profinite

group isomorphism:

φ : Γ̂g,r = ̂π1(Xan
C )

top
→̃π1(Xk).

Fix a compatible system (ζn)n≥0 of primitive nth roots of unity in k (that is such that ζnnm = ζm,
n,m ≥ 0) and write MXk

as an inductive limit MXk
= ∪n≥0Mn of finite Galois subextensions of

MXk
/k(X). Also, fix a compatible system (ti,n)n≥0 of places of Mn above ti and a compatible

system (ui,n)n≥0 of uniformizing parameters of the (ti,n)n≥0 (that is such that umi,nm = ui,n,
n,m ≥ 0). Then, for each n ≥ 0, one gets a canonical (well-defined) group monomorphism
Iti,n ↪→ k

×, ω 7→ ω(ui,n)
ui,n

mod ti,n, where Iti,n denotes the inertia group of ti,n in Mn/k(X).
The distinguished generator of the inertia above ti in π1(xk, x) associated with these data is the
inverse image of (ζ|Iti,n |)n≥0 via the canonical morphism lim

←−
Iti,n ↪→ k

×. These describe a whole

conjugacy class Wti in π1(xk, a), called the inertia canonical class, when the data (ζn)n≥0 and
(ti,n)n≥0 vary.
Then φ sends the generator γi of Γ̂g,r to a distinguished generator ωti of the inertia group Iti of
ti in MXk

/k(X), i = 1, . . . , r. Furthermore,

Lemma 3.32 (Branch cycle argument) ρ : Γk → Out(π1(Xk, x)) acts on the inertia canonical
class as follows. For any σ ∈ Γk ρ(σ)(Wti) = W

χ(σ)
σ(ti)

, where χ : Γk → Ẑ denotes the cyclotomic
character.

Note that Γ̂0,0 = Γ̂0,1 = 1, Γ̂0,2 = Ẑ, Γ1,0 = Ẑ2 and for any (g, r) 6= (0, 0), (0, 1), (0, 2), (1, 0), Γ̂g,r
is non abelian. Hence X is hyperbolic af and only if π1(Xk, x) is non-abelian.

2. p > 0. The category RDXX of all finite covers of X̃ etale over X and tamely ramified over DX

with fiber functors defined by geometric points x ∈ X̃ Galois with corresponding fundamental
group the so-called tame fundamental group πDX1 (X,x). Note that, by definition, πDX1 (X, a) is
the maximal quotient of π1(X, a) classifying finite covers of X̃ etale over X and tamely ramified
over DX . If x is a geometric generic point on X̃ then πDX1 (X, a) is just the Galois group of the
maximal algebraic extension MDX

X /k(X) unramified over X and tamely ramified over DX . In
particular, one again gets the short exact sequence of finite groups:

1→ πDX1 (Xk, x)→ πDX1 (X,x)→ π1(spec(k), s) = Γk → 1

and a well-defined action ρ : Γk → Out(πDX1 (Xk, x)).
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Theorem 3.33 (Pro-p completion of the fundamental group) Let rX := dimFpJacX̃|k[p] ≤ g

denotes the p-rank of the jacobian of X̃. Then
(i) If r = 0 then π

(p)
1 (Xk, x) is a free pro-p group on rX generators.

(ii) If r > 0 then π
(p)
1 (Xk, x) is a free pro-p group on |k| generators.

The theory of specialization also works along the same guidelines. More precisely,there exists
a smooth W (k)-curve W (X̃) and a divisor W (DX) ⊂ W (X̃) etale on W (k) such that, with
W (X) := W (X̃) \W (DX), one has cartesian squares

X̃ //

��
�

W (X̃)

��
k // W (k)

, X //

��
�

W (X)

��
k // W (k)

The cartesian squares
X //

��
�

W (X)

��
�

W (X)1oo

��
k // W (k) Koo

give rise to a commutative diagram of profinite groups

πDX1 (X) //

��

πDX1 (W (X))

��

π1(X1)

��

oo

Γk // πt1(spec(W (k))) ΓK ,oo

where πDX1 (W (X)) is the maximal quotient of π1(W (X̃)) classifying finite covers of W (X̃)
unramified everywhere except over W (DX) and the generic point of X̃ and πt1(spec(W (k))) is
the Galois group of the maximal algebraic extension K ↪→ Kt tamely ramified over W (k).

Theorem 3.34 (specialization of tame fundamental groups) Let W (k)t denote the extension of
W (k) to Kt, then the canonical profinite groups morphism

πDX1 (W (X)K)� πDX1 (W (X)W (k)t)

is an epimorphism and the canonical group morphism

πDX1 (Xk)→̃π
DX
1 (W (X)W (k)t ,W (a))

is an isomorphism, which yield a well-defined specialization epimorphism:

sp : πDX1 (W (X)K)� πDX1 (Xk).

Furthermore, sp : πDX1 (W (X)K) � πDX1 (Xk) induces a profinite group isomorphism on the
prime-to-p completions:

sp(p)′ : π(p)′

1 (W (X)K))→̃π(p)′

1 (Xk).

58



As a result, one gets a canonical profinite group epimorphism

φ : Γ̂g,r � πDX1 (Xk),

such that for each i = 1, . . . , r, φ sends the generator γi of Γ̂g,r to a distinguished generator ωti
of the inertia group Iti above ti and ρDX (σ)(Wti) = W

χ(σ)
σ(ti)

, σ ∈ Γk.

Remark 3.35 The only known proof of the above results is via Riemann Existence Theorem hence resorts to transcen-
dental methods. Finding an algebraic proof remains a widely open question. In [BE08], such an algebraic proof, relying

on Grothendieck-Ogg-Shafarevich formula, is provided for the maximal prime-to-p solvable quotientπ
(p′),res
1 (Xk, x) of

π1(Xk, x).

Remark 3.36 From the above, the following information can be read out of π1(Xk):

1. p, except if X = P1
k . Indeed, p = 0 if and only if for any prime l π1(Xk)

(l) is of finite type and p > 0 if and only
if there exists a prime l such that π1(Xk)

(l) is not of finite type, in which case l = p.

2. Whether X is affine or proper. Indeed, X is proper if and only if π1(Xk)
(p) is of finite type.

3. If X is complete then 2g = rank((π1(Xk)
(l))ab), l 6= p and rX = rank((π1(Xk)

(p))ab).

The general idea of Grothendieck’s anabelian geometry is that, considering the arithmetic fundamental group π1(X)
instead of the geometric fundamental group π1(Xk), one should be able to recover much more information about X, up
to reconstruct its isomorphism class up to canonical ismorphisms.

4 Anabelian geometry - a tentative of definition

The idea of Grothendieck’s anabelian geometry is that, provided they satisfy some ”anabelian” con-
ditions, geometry and arithmetic of schemes should be encoded in their fundamental group. Though
there is no clear definition of what ”anabelian” conditions are or of what ”being encoded in its fun-
damental group” means, we will try and make these ideas more explicit.

Note that this section is (at least currently), rather a catalogous of classical anabelian conjectures
and results but does not contain any proofs (nor even sketches of). However, the reader interested in
going further can consult the comprehensive lecture notes of F. Pop for the A.W.S. 2005 [P05].

4.1 Anabelian categories

In the following, given a profinite group G, we will write

i : G → Aut(G)
g 7→ i(g) = g · − · g−1

for the inner conjugation morphism, Inn(G) and Out(G) for the image and cokernel of i respectively.
Recall that ker(i) = Z(G) is just the center of G.

Also, given a category C, we will write GrC for the associated groupoid that is Ob(GrC) = Ob(C)
and HomGrC = IsomC .

Let S be a connected scheme. Write Sch/S for the category of S-schemes with dominant morphisms
and Sch0/S ⊂ Sch/S for the full subcategory of connected objects. The theory of fundamental groups
exposed in the preceding sections motivates the introduction of the following category GS defined by:
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- Objects: pairs (G, π), where G is a profinite group and π : G → π1(S) is a profinite group
morphism. Write G for the kernel of π : G→ π1(S).

- Morphisms: Given two objects (Gi, πi), i = 1, 2 in GS , the set of morphisms from (G1, π1)
to (G2, π2) in GS is the set I/ ∼, where I is the set of all open profinite group morphisms
φ : G1 → G2 such that there exists γφ ∈ π1(S) with π2 ◦ φ = i(γφ) ◦ π1. Then Inn(G2)
acts naturally on the right on I via I × Inn(G2) → I, (φ, i(g2)) 7→ i(g2) ◦ φ and one sets
I/ ∼:= I/ · Inn(G2).

Then, the etale fundamental group functor π1(−) induces natural functors:

AS : Sch0/S → GS , GrAS : GrSch0/S → GrGS

With these notations, one can make an attempt to define anabelian categories. A full subcategory
AS ⊂ Sch0/S is said to be S-Hom-anabelian (resp. S-Isom-anabelian) if AS : AS → GS (resp. if
GrAS : GrAS → GrGS) is fully faithfull. When AS has a single object X, we say that X is S-Hom-
anabelian or S-Isom-anabelian if AS is.

Requiring the full faithfullness of AS or even GrAS might be too much and one might be led
to consider weaker notions. Note that AS induces a set-theoretical map at the level of isomorphism
classes of objects:

AS : Ob(AS)/IsomAS → Ob(GS)/IsomGS .

With this notation, a full subcategoryAS ⊂ Sch0/S is said to be S-wIsom-anabelian (resp. S-wwIsom-
anabelian) if AS : Ob(AS)/IsomAS → Ob(GS)/IsomGS is injective (resp. has finite fibers).

Remark 4.1
1. Let us mention two other possible variants for the definition of GS and AS .

(a) Birational variant: Replace π1(S) with Γk(S) in the definition of GS and define AS to be the relative function
field functor sending X → S to k(S) ↪→ k(X).

(b) Tame variants: For instance, if S = spec(k), with k a field of characteristic p > 0, replace the fundamenta
group functor π1(−) with the tame fundamental group functor πt1(−) in the definition of AS . We leave it as
an exercise to the reader to generalize those variants for more general notions of tame fundamental groups.

2. Note that most of te above formalism can be extended to any Galois category (See proposition ??).

4.2 Examples and historical conjectures

4.2.1 Non anabelian categories

So far, most of the examples we considered are NOT anabelian. For instance, if S = spec(C), Riemann
existence theorem roughly tells us that full subcategories AC ⊂ Sch0TF /C are far from being anabelian
since the fundamental group of their objects encodes no more than topological data of the associated
complex analytic space. If we replace C by any algebraically closed field k of characteristic 0, lemma
3.21 tells us that this remains true (at least) for full subcategories Ak ⊂ Sch0TF /k (of proper k-
schemes). For instance, if Ak is the category of all d-dimensional abelian varieties over k then the
image of Ak consists of a single element, namely Ẑ2d. Similarly, if Ak is the category of all genus g
smooth proper curves over k then the image of Ak consists only of Γ̂g,0 etc. If we replace C by any
algebraically closed field k of characteristic p > 0, things already change drastically (see section 4.3),
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which, in particular, shows the p-part of the fundamental group is a rich invariant over such fields.
Riemann Existence theorem and the specialization theory of fundamental group suggest that one

should search for anabelian categories among arithmetic ones. This was, actually, the original intuition
of Grothendieck. Another motivation comes from Tate conjecture and side results proved in [F83].
Indeed, let Ci be a smooth projective curve over k; recall that π1(Ci)ab =

∏
l Tl(Pic(Ci|k)) as Ẑ[Γk]-

modules, i = 1, 2. So, if π1(C1)ab and π1(C2)ab are Γk-isomorphic then Pic(C1|k) and Pic(C2|k) are
isogenous over k and, fixing C2, there are only finitely many possibilities for the isomorphism class of
Pic(C1|k) over k (isogeny theorem) hence for the isomorphism class of C1 over k (Torelli’s theorem).
This already shows that the category Ak of all smooth projective curves over k is k-wwIsom-anabelian.
But the abelianization π1(X)ab of the fundamental group viewed as a Γk-module encodes much less
than the datum of π1(X) → Γk, which one can expect to be rich enough to narrow the number of
smooth projective curves over k with the same fundamental group from ”finitely many” to ”one”.

4.2.2 Grothendieck’s examples of categories that should be anabelian

Let k be a finitely generated field (over its prime field). Then, the following categories are expected
to be k-anabelian5:
- Ak = category of all 0-dimensional connected schemes of finite type over k.
- Ak = category of all smooth, geometrically connected and hyperbolic curves over k. Recall that a
curve X over k is said to be hyperbolic if, writing X ↪→ X̃ for the smooth compactification of X, g
for the genus of X̃ and r for |X̃ \X| then 2− 2g − r < 0 (that is (g, r) 6= (0, 0), (0, 1), (0, 2), (1, 0) or,
equivalently, Autk(X) is finite).
- Ak = category of all elementary anabelian schemes over k. A scheme X over k is said to be an
elementary anabelian scheme over k if there exists a finite sequence of k-morphisms X = X0 → X1 →
· · · → Xn = spec(k) with Xi−1 → Xi a relative hyperbolic curve, i = 1, . . . , n.

Eventually, the moduli schemes Mg,r (2−2g−r < 0) and Ag,d are also expected to be Z-anabelian.
Apart from these, there does not seem to have clearly stated anabelian conjectures in higher (i.e. ≥ 2)
dimensions. (Recall corollary 3.27 and example 3.28 ).

4.2.3 The section conjecture

Let k be a field and X a normal scheme geometrically connected over k. Then one has the canonical
short exact sequence from Galois theory:

1→ π1(Xk)→ π1(X)→ Γk → 1 (9)

Now, any k-rational point x : spec(k)→ X induces a (π1(Xk)-conjugacy class of) section morphism(s)
sx : Γk → π1(X) splitting (9). The π1(Xk)-conjugacy classes of section morphisms s : Γk → π1(X)
splitting (9) can be regarded as homGk(Γk, π1(X)) and a special case of the section conjecture asserts
that if k is a finitely generated field of characteristic 0 and if X is a proper hyperbolic curve over k
then the following canonical map is bijective:

HomSch/k(spec(k), X)→̃HomGk(Γk, π1(X)). (10)

5At this level, we do not give a precise meaning to ”k-anabelian” since Grothendieck himself remained vague in his
formulations.
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More generally, let X be a hyperbolic curve of type (g, r) over k and let X ↪→ X̃ be its smooth
compactification. Then, for any k-rational point x̃ ∈ X̃(k), the short exact sequence

1→ IΓk(X)
(x̃)→ DΓk(X)

(x̃)→ Γk → 1 (11)

always splits but this splitting is not unique up to inner conjugation by elements of Γk(X) hence, if
x̃ ∈ X̃(k) \X(k), x̃ gives rise to several π1(Xk)-conjugacy classes of splitting sections of (9) and the
map (10) does not extend a priori to homSch/k(spec(k), X̃). A splitting section s : Γk → π1(X) of (9)
is said to be unbranched if s(Γk) is contained in no decomposition group of a point x̃ ∈ X̃(k) \X(k)
in π1(X). A basic form of the section conjecture can thus be formulated as follows:

Conjecture 4.2 (Section conjecture) Let k be a number field and let X be a hyperbolic curve over k.
Then the canonical map HomSch/k(spec(k), X)→̃HomGk(Γk, π1(X)) is injective and induces a bijection
onto the set of π1(Xk)-conjugacy classes of unbranched sections. Furthermore, any splitting section
s : Γk → π1(X) of (9) arises geometrically (i.e. is induced by a splitting of a short exact sequence like
(11)).

4.3 Results

4.3.1 0-dimensional case

Theorem 4.3 (Artin-Schreier) Let k be a field with non trivial finite absolute Galois group Γk. Then
Γk = Z/2 and k is real-closed (in particular, k has characteristic 0 and k = k(

√
−1)).

The Artin-Schreier theorem shows that the assumption that the absolute Galois group is non trivial
finite already imposes restrictions on k but these are not on the isomorphism type of k (there are
infinitely many isomorphism classes of real closed field and their classification seems to be currenly
out of reach). However, if k ⊂ Q is a field of algebraic numbers, Artin-Schreier theorem shows that
if k has non trivial finite absolute Galois group then k is isomorphic to R ∩ Q. In particular, the
subextension of Q with non trivial finite absolute Galois group are exactly the σ(R ∩Q), σ ∈ ΓQ.

Later, Neukirch proved a p-adic analog of the Artin-Schreier theorem, which was the first main
step towards the proof of the 0-dimensional anabelian conjectures.

Theorem 4.4 (Neukirch) Let k ⊂ Q be subfield and p a prime number.
(i) Assume that Γk ' ΓQp. Then there exists a place P ∈ P(Q) such that k is the decomposition field
of P in Q/Q.
(ii) Assume that Γk is isomorphic (as profinite group) to an open subgroup of ΓQp. Then there exists
a place P ∈ P(Q) such that k is a finite extension of the decomposition field of P in Q/Q.

A consequence of Neukirch theorem is that, given two number fields k1, k2, any profinite group
isomorphism Φ : Γk1→̃Γk2 induces an arithemetical equivalence φ : P(k1)→̃P(k2) that is a bijection
between the places of k1 and thowe of k2 preserving the invatiants e(P |p) and f(P |p). this, in turn,
implies that if k1/Q is Galois then k1 and k2 are isomorphic a fields hence, automatically, as Q-
extensions. But since k1/Q is norma, one gets k1 = k2 as subextensions of Q/Q hence Γk1 = Γk2 as
subgroups of ΓQ. In particular, this shows that any open normal subgroup of ΓQ is characteristic.
This lead Neukirch to ask:
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- Do we have Aut(ΓQ) = Inn(ΓQ)?
- Is any profinite group isomorphism Φ : Γk1→̃Γk2 as above induced by inner conjugation by an

element σ ∈ ΓQ?
Both answers were anwered positively in the 70’s to get:

Theorem 4.5 (Neukirch-Ikeda-Iwasawa-Uchida) Let k1, k2 be global fields. The nfor any profinite
group isomorphism Φ : Γk1→̃Γk2 there exists a unique field isomorphism φ : ks1→̃ks2 such that Φ(g1) =
φ−1g1φ, g1 ∈ Γk1. In particular, - φ(k1) = k2.

- Isom(k1, k2)→̃IsomGZ(Γk1 ,Γk2)(= Out(Γk1 ,Γk2)).

Given a field k, let ki denote its purely inseparable closure. Also, two fields morphisms φ, ψ : k1 →
k2 are said to be quivalent up to Frobenius twist if ψ = φ ◦ Frn, where Fr : k1→̃k1, x 7→ xchar(k1)

denotes the absolute Frobenius on k1. With these notation, let us give a more precise formualtion of
the 0-dimensional anabelian conjectures:

Conjecture 4.6 (0-dimensional anabelian conjectures)

1. Absolute forms:

(a) 0-dimensional Z-Isom-anabelian conjecture: Given any finitely generated infinite fields k1,
k2 and any profinite group isomorphism Φ : Γk1→̃Γk2 there exists a field isomorphism
φ : k2→̃k1, unique up to Frobenius twist, and such that Φ(g1) = φ−1 ◦ g1 ◦ φ, g1 ∈ Γk1 (in
particular, φ(ki2) = ki1).

(b) 0-dimensional Z-Hom-anabelian conjecture: Given any finitely generated infinite fields k1,
k2 and any open profinite group morphism Φ : Γk1 → Γk2 there exists a field embedding
φ : k2 ↪→ k1, unique up to Frobenius twist, and such that φ(k2) ⊂ φ(k2) and Φ(g1) =
φ−1 ◦ g1 ◦ φ, g1 ∈ Γk1 (in particular, φ(ki2) ⊂ ki1).

2. Relative forms: Let k be a field.

(a) 0-dimensional k-Isom-anabelian conjecture: Given any fields extensions k1/k, k2/k and any
profinite group Γk-isomorphism Φ : Γk1→̃Γk2 there exists an isomorphism φ : k2→̃k1 of k-
extensions, unique up to Frobenius twist, and such that Φ(g1) = φ−1 ◦ g1 ◦ φ, g1 ∈ Γk1 (in
particular, φ(ki2) = ki1).

(b) 0-dimensional k-Hom-anabelian conjecture:Given any fields extensions k1/k, k2/k and any
open profinite group Γk-morphism Φ : Γk1 → Γk2 there exists an embedding φ : k2 ↪→ k1

of k-extensions, unique up to Frobenius twist, and such that φ(k2) ⊂ φ(k2) and Φ(g1) =
φ−1 ◦ g1 ◦ φ, g1 ∈ Γk1 (in particular, φ(ki2) ⊂ ki1).

The final proof of the 0-dimensional Z-anabelian conjectures was finally established by Pop (Isom-
form) in all characteristics [P94] and Mochizuki (Hom-form) in characteristic 0 [M99].

Theorem 4.7 (0-dimensional anabelian conjectures) Conjecture4.6 (1) (a) holds in any characteristic
and conjecture 4.6 (1) (b) holds in characteristic 0.

Actually, Mochizuki’s result is a consequence of its [M99, Th. B] stating that for any sub-p-adic field
k (see section 4.8) conjecture 4.6 (2) (b) holds for regular, finitely generated extensions of k.
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4.3.2 1-dimensional case

Given a k-curve X → k, let Xi → ki denote the normalization of X in k(X)i/k(X). Also, write
X(n) := X ×k,Frn k → k for the nth Frobenius twist of X → k. With these notation, one can, as in
the 0-dimensional cases, give a precise formulation of the 1-dimensional anabelian conjectures.

Conjecture 4.8 (1-dimensional anabelian conjectures)

1. Absolute forms:

(a) 1-dimensional Z-Isom-anabelian conjecture: Given any hyperbolic curves X1 → k1, X2 →
k2 defined over finitely generated base fields k1, k2 and any profinite group isomorphism
Φ : π1(X1)→̃π1(X2) there exists a curves isomorphism φ : Xi

1→̃Xi
2, unique up to Frobenius

twist and such that Φ = π1(φ).

(b) 1-dimensional Z-Hom-anabelian conjecture: Given any hyperbolic curves X1 → k1, X2 →
k2 defined over finitely generated base fields k1, k2 and any open profinite group morphism
Φ : π1(X1)→ π1(X2) there exists a dominant curves morphism φ : Xi

1 → Xi
2, unique up to

Frobenius twist and such that Φ = π1(φ).

2. Relative forms: Let k be a field.

(a) 1-dimensional k-Isom-anabelian conjecture: Given any hyperbolic k-curves X1, X2 and any
profinite group Γk-isomorphism Φ : π1(X1)→̃π1(X2) there exists a k-curves isomorphism
φ : Xi

1→̃Xi
2, unique up to Frobenius twist and such that Φ = π1(φ).

(b) 1-dimensional k-Hom-anabelian conjecture: Given any hyperbolic k-curves X1, X2 and any
open profinite group Γk-morphism Φ : π1(X1) → π1(X2) there exists a dominant k-curves
morphism φ : Xi

1 → Xi
2, unique up to Frobenius twist and such that Φ = π1(φ).

We list below the main ”classical results” (quoting Akio Tamagawa) about 1-dimensional anbelian
conjectures together with the original references.

1. A. Tamagawa [T97]:

(a) Affine (hyperbolic) curves over finite fields.
(i) Conjecture 4.8 (1) (a) (resp. the tame variant of conjecture 4.8 (1) (a)) holds for affine
(resp. affine hyperbolic) curves over finite fields.
(ii) Given a finite field k, conjecture 4.8 (2) (a) (resp. the tame variant of conjecture 4.8
(2) (a)) holds for affine (resp. affine hyperbolic) k-curves.

(b) Affine hyperbolic curves over finitely generated fields of characteristic 0.
(i) Conjecture 4.8 (1) (a) holds for affine hyperbolic curves over finitely generated fields of
characteristic 0.
(ii) Given a finitely generated field k of characteristic 0, conjecture 4.8 (2) (a) holds for
affine hyperbolic k-curves.

2. S. Mochizuki:
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(a) Hyperbolic curves over finitely generated fields of characteristic 0 [M96]. The results below
extend Tamagawa’s results (b) to arbitrary hyperbolic curves.
(i) Conjecture 4.8 (1) (a) holds for hyperbolic curves over finitely generated fields of char-
acteristic 0.
(ii) Given a finitely generated field k of characteristic 0, conjecture 4.8 (2) (a) holds for
hyperbolic k-curves.

(b) Hyperbolic curves over sub-p-adic fields [M99]. A field k is said to be sub-p-adic if it can
be embedded into a finitely generated extension of Qp. Given a sub-p-adic field k and
a geometrically connected k-scheme X, set N (p)(Xk) := ker(π1(Xk) → π1(Xk)

(p)), where
π1(Xk)→ π1(Xk)

(p) denotes the pro-p completion of π1(Xk). Since N (p)(Xk) is characteris-
tic in π1(Xk), it is normal in π1(X) and one can form the quotient Π(p)

X := π1(Xk)/N
(p)(Xk).

With these notation, the short exact sequence

1→ π1(Xk)→ π1(X)→ Γk → 1

induces a short exact sequence:

1→ π1(Xk)
(p) → Π(p)

X → Γk → 1 (12)

and the following strong variant of conjecture 4.8 (2) (b) holds [M99, Th. A]: for any
hyperbolic k-curve X the functors Y 7→ HomSch/k(Y,X) and Y 7→ HomGk(Π

(p)
Y ,Π(p)

X ) from
the category of geometrically integral k-schemes of finite type to sets are isomorphic and
this isomorphism is functorial in X.
From this result, Mochizuki derived the following higher dimensional significative result in
anabelian geometry [M99, Th. D]. An hyperbolically fibered surface X over k is a k-scheme
X = X̃ \ D, where X̃ is a smooth proper hyperbolic curve over an hyperbolic k-curve S
and D ⊂ X̃ is a divisor, etale on S. Then conjecture 4.8 (2) (a) holds for hyperbolically
fibered surfaces over k.

3. J. Stix: Let k be a finitely generated field of characteristic p > 0.
Recall that a k-curve X is isotrivial if there exists a finite extension F of the base field Fp such
that Xk is defined over F .

(a) Affine hyperbolic curves over finitely generated fields of characteristic p > 0 [S02]. The tame
variant of conjecture 4.8 (2) (a) holds for any affine hyperbolic k-curves X1, X2 provided
one of them is not isotrivial. If X1, X2 are two affine isotrivial hyperbolic k-curves, then
the the image of isomSch/k(X1, X2)→ isomGk(π

t
1(X1), πt1(X2)) is dense and the uniqueness

part of the tame variant of conjecture 4.8 (2) (a) holds.

(b) Hyperbolic curves over finitely generated fields of characteristic p > 0 [S02]. Conjecture 4.8
(2) (a) holds for any hyperbolic k-curves X1, X2 provided one of them is not isotrivial. If
X1, X2 are two isotrivial hyperbolic k-curves, then the the image of isomSch/k(X1, X2) →
isomGk(π1(X1), π1(X2)) is dense and the uniqueness part of conjecture 4.8 (2) (a) holds.

4.3.3 Higher dimensional results.

As already mentioned, the picture in dimension ≥ 2 is unclear. So, let us mention only a few results
(kindly communicated by Akio Tamagawa during his lectures at the ACAG 2007).
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1. Shimura varieties (Y. Ihara, H. Nakamura): Let k be a number field then no Siegel or Hilbert
modular variety of dimension ≥ 2 is anabelian (Recall that Ag,d was expected to be anabelian).

2. Elementary anabelian schemes:
- S. Mochizuki: The category of elementary anabelian surfaces over sub-p-adic fields is k-Isom-
anabelian.
- Given an hyperbolic curve X → k, let Xn := {x ∈ Xn | xi 6= xj , 1 ≤ i 6= j ≤ n} denotes the
configuration space for n distinct ordered points on X. Then Xn+1 → Xn → · · · → X1 = X are
elementary anabelian schemes and:
– H. Nakamura, A. Tamagawa: if k is a finitely generated field of characteristic 0 then Xn is
k-Isom-anabelian for X = P1

k \ {0, 1∞}. This results was next extended by
– S. Mochizuki, H. Nakamura, N. Takao: if k is a finitely generated field of characteristic 0 then
Xn is k-anabelian for any hyperbolic curves X.
– S. Mochizuki, A.Tamagawa: if k is a sub-p-adic field then the category Cn ⊂ Sch0TF /k of all
etale covers of some Xn, for X → k a proper hyperbolic k-curve is k-Isom-anabelian.

3. Moduli spaces of curves:
- J. Stix: If S is a normal scheme and U ⊂ S a non-empty open subset then the following
canonical diagram is cartesian:

HomSch/Z(S,Mg,r)
(∗) //

��
�

HomGZ(π1(S), π1(Mg,r))

��
HomSch/Z(U,Mg,r)

(∗∗)// HomGZ(π1(U), π1(Mg,r)).

- M. Boggi, P. Lochak6: Assume that if g = 0, r ≥ 5, if g = 1, r ≥ 3, if g = 2, r ≥ 1 and if g ≥ 3,
r ≥ 0. Let k be a sub-p-adic field and X →Mg,rk ∈ RetMg,rk

. Then the canonical map:

AutSch/k(X)→̃Out∗Gk(π1(Xk))

is bijective (where ∗ means inertia preserving).
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Etude cohomologique des faisceaux cohérents, Publ. Math. I.H.E.S. 11, 1961.
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