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Abstract : the main topic of these lectures is to present the stable reduction theorem with the
point of view of Deligne and Mumford. We introduce the basic material needed to manipulate
models of curves, including intersection theory on regular arithmetic surfaces, blow-ups and
blow-downs, and the structure of the jacobian of a singular curve. The proof of stable reduction
in characteristic 0 is given, while the proof in the general case is explained and important parts
are proved. We give applications to the moduli of curves and covers of curves.
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1 Models of curves

In all the text, a curve over a base field is a proper scheme over that field, of pure dimension 1.
Starting in subsection 1.2, we fix a complete discrete valuation ring R with fraction field K and
algebraically closed residue field k.

1.1 Definitions : normal, regular, semistable models

If K is a field equipped with a discrete valuation v and C is a smooth curve over K, then a
natural question in arithmetic is to ask about the reduction of C modulo v. This implies looking
for flat models of C over the ring of v-integers R ⊂ K with the mildest possible singularities. If
there exists a model with smooth special fibre over the residue field k of Ov, we say that C has
good reduction at v. It is known and easy to see that there exist curves which do not have good
reduction, so we have to consider other kinds of models. The mildest curve singularity is a node,
also called ordinary double point, that is to say a rational point x ∈ C such that the completed
local ring ÔC,x is isomorphic to k[[u, v]]/(uv). This leads to :
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Definition 1.1.1 A stable (resp. semistable) curve over an algebraically closed field k is a curve
which is reduced, connected, has only nodal singularities, all of whose irreducible components
isomorphic to P1

k meet the other components in at least 3 points (resp. 2 points).

A proper flat morphism of schemes X → S is called a stable (resp. semi-stable) curve if it
has stable (resp. semi-stable) geometric fibres. In particular, given a smooth curve C over a
discretely valued field K, a stable (resp. semi-stable) curve X → S = Spec(R) with a specified
isomorphism XK ' C is called a stable (resp. semi-stable) model of C over R.

One can also understand the expression the mildest possible singularities in an absolute mean-
ing. For example, one can look for normal or regular models of the K-curve C, by which we
mean a curve X → S = Spec(R) whose total space is normal, or regular. By normalization, one
may always find normal models. Regular models will be extremely important, firstly because
they are somehow easier to produce, secondly because it is possible to do intersection theory on
them, and thirdly because they are essential to the construction of stable models. We emphasize
that in contrast with the notions of stable and semistable models, the notions of normal and reg-
ular models are not relative over S, in particular such models have in general singular, possibly
nonreduced, special fibres.

For simplicity we shall call arithmetic surface a proper, flat scheme relatively of pure dimen-
sion 1 over R with smooth geometrically connected generic fibre. We will specify each time if we
speak about a normal arithmetic surface, or a regular arithmetic surface, etc.

1.2 Existence of regular models

From this point until the end of the notes, we consider a complete discrete valuation ring R
with fraction field K and algebraically closed residue field k.

For two-dimensional schemes, the problem of resolution of singularities has a satisfactory
solution, with a strong form. Before we state the result, recall that a divisor D in a regular
scheme X has normal crossings if for every point x ∈ D there is an étale morphism of pointed
schemes p : (U, u) → (X, x) such that p∗D is defined by an equation a1 . . . an = 0 where a1, . . . , an

are part of a system of parameters at u.

Theorem 1.2.1 For every excellent, reduced, nœtherian two-dimensional scheme X, there exists
a proper birational morphism X ′ → X where X ′ is a regular scheme. Furthermore, we may choose
X ′ such that its reduced special fibre is a normal crossings divisor.

In fact, following Lipman [Lip2], one may successively blow up the singular locus and nor-
malize, producing a sequence

· · · → Xn → · · · → X1 → X0 = X

that is eventually stationary at some regular X∗. Then one can find a composition of a finite
number of blow-ups X ′ → X∗ so that the reduced special fibre of X ′ is a normal crossings divisor.
For details on this point, see [Liu], section 9.2.4 (note that in loc. cit. the definition of a normal
crossings divisor is different from ours, since it allows the divisor to be nonreduced).

1.3 Intersection theory on regular arithmetic surfaces

The intersection theory on an arithmetic surface, provided it can be defined, is determined
by the intersection numbers of 1-cycles or Weil divisors. The prime cycles fall into two types :
horizontal divisors are finite flat over R, and vertical divisors are curves over the residue field k
of R. Let Div(X) be the free abelian group generated by all prime divisors of X, and Divk(X)
be the subgroup of vertical divisors.

In classical intersection theory, as exposed for example in Fulton’s book [Ful], the possibility
to define an intersection product E · F for arbitrary cycles E,F in a variety V requires the
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assumption that V is smooth. It would be too strong an assumption to require our surfaces to
be smooth over R, but as we saw in the previous subsection, we can work with regular models.
As it turns out, for them one can define at least a bilinear map Divk(X)×Div(X) → Z.

More precisely, let X be a regular curve over R, let i : E ↪→ X be a prime vertical divisor and
j : F ↪→ X an arbitrary effective divisor. By regularity, Weil divisors are the same as Cartier
divisors, so the ideal sheaf I of F is invertible. Since E is a curve over the residue field k there
is a usual notion of degree for line bundles, and we may define an intersection number by the
formula

E · F := degE(i∗I−1) .

It follows from this definition that if E 6= F , then E · F is at least equal to the number of
points in the support of E ∩ F , in particular it is nonnegative. It is easy to see also that if E
and F intersect transversally at all points, then E · F is exactly the number of points in the
support of E ∩ F (the assumption that k is algebraically closed allows not to care about the
degrees of the residue fields extensions). The intersection product extends by bilinearity to a
map Divk(X)×Div(X) → Z satisfying the following properties :

Proposition 1.3.1 Let E,F be divisors on a regular arithmetic surface X with E vertical. Then
one has :

(1) if F is a vertical divisor then E · F = F · E,

(2) if E is prime then E · F = degE(O(F )⊗ OE),

(3) if F is principal then E · F = 0.

Proof : Cf [Lic], part I, section 1. �

Here are the most important consequences concerning intersection with vertical divisors.

Theorem 1.3.2 Let X be a regular arithmetic surface and let E1, . . . , Er be the irreducible
components of Xk. Then :

(1) Xk · F = 0 for all vertical divisors F ,

(2) Ei · Ej ≥ 0 if i 6= j and E2
i < 0,

(3) the bilinear form given by the intersection product on Divk(X)⊗Z R is negative semi-definite,
with isotropic cone equal to the line generated by Xk.

Proof : (1) The special fibre Xk is the pullback of the closed point of Spec(R), a principal Cartier
divisor, so it is a principal Cartier divisor in X. Hence Xk · F = 0 for all vertical divisors F ,
by 1.3.1(3).
(2) If i 6= j, we have Ei · Ej ≥ #|Ei ∩ Ej | ≥ 0. From this together with point (1) and the fact
that the special fibre is connected, we deduce that

E2
i = (Ei −Xk) · Ei = −

∑
j 6=i

Ej · Ei < 0 .

(3) Let di be the multiplicity of Ei, aij = Ei · Ej , bij = didjaij . Let v =
∑

viEi be a vector in
Divk(X) ⊗Z R and wi = vi/di. We have

∑
i bij = Xk · (djFj) = 0 by point (1), and

∑
j bij = 0

by symmetry, so

v · v =
∑
i,j

aijvivj =
∑
i,j

bijwiwj = −1
2

∑
i6=j

bij(wi − wj)2 ≤ 0 .

Hence the intersection product on Divk(X) ⊗Z R is negative semi-definite. Finally if v · v = 0,
then bij 6= 0 implies wi = wj . Since Xk is connected, we obtain that all the wi are equal and
hence v = w1Xs. Thus the isotropic cone is included in the line generated by Xk, and the
opposite inclusion has already been proved. �

3



Example 1.3.3 Let X be a regular arithmetic surface whose special fibre is connected, reduced,
with nodal singularities. Let E1, . . . , Er be the irreducible components of Xk. Then Ei · Ej is
the number of intersection points of Ei and Ej if i 6= j, and (Ei)2 is the opposite of the number
of points where Ei meets another component, by point (1) of the theorem. Hence Xk is stable
(resp. semi-stable) if and only it does not contain a projective line with self-intersection −2
(resp. with self-intersection −1).

As far as horizontal divisors are concerned, the most interesting one to intersect with is the
canonical divisor associated to the canonical sheaf, whose definition we recall below. If E is
an effective vertical divisor in X, the adjunction formula gives a relation between the canonical
sheaves of X/R and that of E/k. The main reason why the canonical divisor is interesting is
that on a regular arithmetic surface, the canonical sheaf is a dualizing sheaf in the sense of the
Grothendieck-Serre duality theory, therefore the adjunction formula translates, via the Riemann-
Roch theorem, into an expression of the intersection of E with the canonical divisor of X in terms
of the Euler-Poincaré characteristic χ of E. We will now explain this.

Let us first recall shortly the definition of the canonical sheaf of a regular arithmetic surface X,
assuming that X is projective (it can be shown that this is always the case, see [Lic]). We choose
a projective embedding i : X ↪→ P := Pn

R and note that since X and P are regular, then i is
a regular immersion. It follows that the conormal sheaf CX/P = i∗(I/I2) is locally free over X,
where I denotes the ideal sheaf of X in P . Also since P is smooth over R, the sheaf of differential
1-forms Ω1

P/R is locally free over R. Thus the maximal exterior powers of the sheaves CX/P and
i∗Ω1

P/R, also called their determinant, are invertible sheaves on X. The canonical sheaf is defined
to be the invertible sheaf

ωX/R := det(CX/P )∨ ⊗ det(i∗Ω1
P/R)

where (·)∨ = Hom(·,OX) is the linear dual. It can be proved that ωX/R is independant of the
choice of a projective embedding for X, and that it is a dualizing sheaf. Any divisor K ⊂ X
such that OX(K) ' ωX/R is called a canonical divisor.

Theorem 1.3.4 Let X be a regular arithmetic surface over R, E a vertical positive Cartier
divisor with 0 < E ≤ Xk, and KX/R a canonical divisor. Then we have the adjunction formula

−2χ(E) = E · (E + KX/R) .

Proof : In fact, the definition of ωX/R is valid as such for an arbitrary local complete intersection
(lci) morphism. Moreover, for a composition of two lci morphisms f : X → Y and g : Y → Z
we have the general adjunction formula ωX/Z ' ωX/Y ⊗OX

f∗ωY/Z , see [Liu], section 6.4.2.
In particular we have ωE/R ' ωE/k ⊗ f∗ωk/R ' ωE/k where f : E → Spec(k) is the structure
morphism. A useful particular case of computation of the canonical sheaf is ωD/X = OX(D)|D for
an effective Cartier divisor D in a locally nœtherian scheme X (this is left as an exercise). Using
this particular case and the general adjunction formula for the composition E → X → Spec(R),
we have

ωE/k ' ωE/R ' ωE/X ⊗ ωX/R|E ' (OX(E)⊗ ωX/R)|E .

By the Riemann-Roch theorem, we have deg(ωE/k) = −2χ(E) and the asserted formula follows,
by taking degrees. �

1.4 Blow-up, blow-down, contraction

We assume that the reader has some familiarity with blow-ups, and we recall only the features
that will be useful to us. Let X be a nœtherian scheme and i : Z ↪→ X a closed subscheme with
sheaf of ideals I. The blow-up of X along Z is the morphism π : X̃ → X with X̃ = Proj(⊕d≥0I

d).
The exceptional divisor is E := π−1(Z) ; it is a Cartier divisor. If i is a regular immersion, then
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the conormal sheaf CZ/X = i∗(I/I2) is locally free and E ' P(i∗(I/I2)) as a projective space
over Z ; it carries a sheaf OE(1). In this case, one can see that the sheaf O eX(E)|E is naturally
isomorphic to OE(−1), because O eX(E) ' (IO eX)−1.

Example 1.4.1 Let X be a regular arithmetic surface and Z = {x} a regular closed point of
the special fibre. Then X̃ is again a regular arithmetic surface and the exceptional divisor is a
projective line over k, with self-intersection −1.

Example 1.4.2 Let x be a nodal singularity in a normal arithmetic surface. The completed
local ring is isomorphic to O = R[[a, b]]/(ab − πn) for some n ≥ 1. We call the integer n the
thickness of the node. We blow up {x} inside X = Spec(O). If n = 1, the point x is regular so
we are in the situation of the preceding example. If n ≥ 2, the point x is a singular normal point
and it is an exercise to compute that the blow-up of X at this point is

X̃ = Proj(O[[u, v, w]]/(uv − πn−2w2, av − bu, bw − πv, aw − πu)) .

If n = 2, the exceptional divisor is a smooth conic over k with self-intersection −2. If n ≥ 3,
the exceptional divisor is composed of two projective lines intersecting in a nodal singularity of
thickness n− 2, each meeting the rest of the special fibre in one point.

Remark 1.4.3 We saw that among the nodal singularities ab − πn, the regular one for n = 1
shows a different behaviour. Here is one more illustration of this fact. Let X be a regular
arithmetic surface and assume that XK has a rational point Spec(K) → X. By the valuative
criterion of properness, this point extends to a section Spec(R) → X, and we denote by x :
Spec(k) → X the reduction. Let O = OX,x, i : R → O the structure morphism, m the maximal
ideal of R, n the maximal ideal of O. Thus we have a map s : O → R such that s ◦ i = id,
and one checks that this forces to have an injection of cotangent k-vector spaces m/m2 ⊂ n/n2.
Therefore we can choose a basis of n/n2 containing the image of π, in other words we can choose
a system of paramaters for O containing π. This proves that O/π = OXk,x is regular. To sum up,
the reduction of a K-rational point on a regular surface X is a regular point of Xk. Of course,
this is false as soon as n ≥ 2, since the point with coordinates a = π, b = πn−1 reduces to the
node.

The process of blowing-up is a prominent tool in the birational study of regular surfaces. For
obvious reasons, it is also very desirable to reverse this operation and examine the possibility
to blow down, that is to say to characterize those divisors E ⊂ X in regular surfaces that are
exceptional divisors of some blow-up of a regular scheme. Note that if f : X → Y is the blow-up
of a point y, then π is also the blow-down of E := f−1(y) and the terminology is just a way to
put emphasis on (Y, y) or on (X, E).

As a first step, it is a general fact that one can contract the component E, and the actual
difficult question is the nature of the singularity that one gets. We choose to present contractions
in their natural setting, and then we will state without proof the classical results of Castelnuovo,
Artin and Lipman on the control of the singularities.

Definition 1.4.4 Let X be a normal arithmetic surface. Let E be a set of irreducible components
of the special fibre Xk. A contraction is a morphism f : X → Y such that Y is a normal arithmetic
surface, f(E) is a point for all E ∈ E, and f induces an isomorphism

X \ ∪
E∈E

E −→ Y \ ∪
E∈E

f(E) .

Using the Stein factorization, it is relatively easy to see that f is unique if it exists, and
that its fibres are connected. Under our assumption that R is complete with algebraically closed
residue field, one can always construct an effective relative (i.e. R-flat) Cartier divisor D of X
meeting exactly the components of Xk not belonging to E. Indeed, for example if Xk is reduced,
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one can choose one smooth point in each component not in E. Since R is henselian these points
lift to sections of X over R, and we can take D to be the sum of these sections. If Xk is not
reduced, a similar argument using Cohen-Macaulay points instead of smooth points does the job,
cf [BLR], proposition 6.7/4. Thus, existence of contractions follows from the following result :

Theorem 1.4.5 Let X be a normal arithmetic surface. Let E be a set of irreducible components
of the special fibre Xk, and D an effective relative Cartier divisor of X over R meeting exactly
the components of Xk not belonging to E. Then the morphism

f : X → Y := Proj
(
⊕

n≥0
H0(X, OX(nD)

)
is a contraction of the components of E.

Proof : We first explain what is f . Let us write H0(X, OX(nD))∼ for the associated constant
sheaf on X. Note that Proj(⊕n≥0 H0(X, OX(nD))∼) ' Y ×R X, and Proj(⊕n≥0 OX(nD)) ' X
canonically (see [Ha], chap. II, lemma 7.9). The restriction of sections gives a natural map of
graded OX -algebras

⊕
n≥0

H0(X, OX(nD))∼ → ⊕
n≥0

OX(nD) .

We obtain f by taking Proj and composing with the projection Y ×R X → Y .
Since DK has positive degree on XK , it is ample and it follows that the restriction of f

to the generic fibre is an isomorphism. Also, after some more work this implies that OX(nD)
is generated by its global sections if n is large enough ; we will admit this point, and refer to
[BLR], p. 168 for the details. Therefore the ring A = ⊕n≥0 H0(X, OX(nD)) is of finite type
over R by [EGA] III, 3.3.1 and so Y is a projective R-scheme. Moreover X is covered by the
open sets X` where ` does not vanish, for all global sections ` ∈ H0(X, OX(nD)), and f induces
an isomorphism

A(`)
∼−→ H0(X`,OX) .

If follows that A(`), and hence Y , is normal and flat over R. Moreover we see that f∗OX ' OY , so
by Zariski’s connectedness principle (cf [Liu], 5.3.15) it follows that the fibres of f are connected.

It remains to prove that f is a contraction of the components of E. If E ∈ E, then OX(nD)|E '
OE and hence any global section of OX(nD) induces a constant function on E, since E is proper.
It follows that the image f(E) is a point. If E 6∈ E, we may choose a point x ∈ E ∩ Supp(D).
Let ` be a global section that generates OX(nD) on a neighbourhood U of x, for some n large
enough. Then 1/` is a function on X` that, by definition, vanishes on U ∩ Supp(D) (with order
n) and is non-zero on U − Supp(D). Thus f |E is not constant, so it is quasi-finite. Since its
fibres are connected, in fact f |E is birational, and since Y is normal we deduce that f |E is an
isomorphism onto its image, by Zariski’s main theorem (cf [Liu], 4.4.6). �

The numerical information that we have collected about exceptional divisors in subsection 1.3
is crucial to control the singularity at the image points of the components that are contracted, as
in the following two results which we will use without proof. The first is Castelnuovo’s criterion
about blow-downs.

Theorem 1.4.6 Let X be a regular arithmetic surface and E a vertical prime divisor. Then
there exists a blow-down of E if and only if E ' P1

k and E2 = −1.

Proof : See [Lic], theorem 3.9, or [Liu], theorem 9.3.8. �

The second result which we want to mention is an improvement by Lipman [Lip1] of previous
results of Artin [Ar] on contractions for algebraic surfaces.
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Theorem 1.4.7 Let X be a regular arithmetic surface and let E1, . . . , Er be distinct reduced
vertical prime divisors. Assume that the intersection matrix (Ei · Ej) is negative semi-definite
and that the Euler-Poincaré characteristic of the curve C := E1 + · · ·+ Er is positive. Then the
contraction of C is a normal arithmetic surface, and the resulting singularity is a node if and
only if −C2 = H0(C,OC).

Proof : See [Lip1], theorem 27.1, or [Liu], theorem 9.4.15. Note that in the terminology of
[Lip1], a rational double point, (i.e. a rational singularity with multiplicity 2) is none other than
a node. �

1.5 Minimal regular models

We can now state the main results of the birational theory of arithmetic surfaces :

Theorem 1.5.1 Let C be a smooth geometrically connected curve over K, of genus g ≥ 1. Then
C has a minimal regular model over R, unique up to a unique isomorphism.

Proof : By theorem 1.2.1, there exists a regular model for C. By successive blow-downs of
exceptional divisors, we construct a regular model X that is relatively minimal. Let X ′ be another
such model. Since any two regular models are dominated by a third ([Lic], proposition 4.2) and
any morphism between two models factors into a sequence of blow-ups ([Lic], theorem 1.15),
there exist sequences of blow-ups

Y = Xm → Xm−1 → · · · → X1 → X0 = X

and
Y = X ′

n → X ′
n−1 → · · · → X ′

1 → X ′
0 = X ′

terminating at the same Y . We may choose Y such that m + n is minimal. If m > 0, there is an
exceptional curve E for the morphism Y → Xm−1. Since X ′ has no exceptional curve, the image
of E in X ′ is not an exceptional curve, hence there is an r such that the image of E in X ′

r is the
exceptional divisor of X ′

r → X ′
r−1. Also, for all i ∈ {r, . . . , n− 1} the image of E in the surface

X ′
i does not contain the center of the blow-up X ′

i+1 → X ′
i. Thus, we can rearrange the blow-ups

so that E is the exceptional curve of Y → X ′
n. Therefore Xm−1 ' X ′

n and this contradicts the
minimality of m + n. It follows that m = 0, so there is a morphism X → X ′, and since X is
relatively minimal we obtain X ' X ′. �

Theorem 1.5.2 Let C be a smooth geometrically connected curve over K, of genus g ≥ 1.
Then C has a minimal regular model with normal crossings over R. It is unique up to a unique
isomorphism.

Proof : In fact theorem 1.2.1 asserts the existence of a regular model with normal crossings.
Proceeding along the same lines as in the proof of the above theorem, one produces a minimal
regular model with normal crossings. �

2 Stable reduction

In this section, C is a smooth geometrically connected curve over K, of genus g ≥ 2.
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2.1 Stable reduction is equivalent to semistable reduction

Proposition 2.1.1 Let C be a smooth geometrically connected curve over K, of genus g ≥ 2.
Then the following conditions are equivalent :

(1) C has stable reduction,

(2) C has semistable reduction,

(3) the minimal regular model of C is semistable.

Proof : (1) ⇒ (2) is clear.
(2) ⇒ (3) : let X be a semistable model of C over R. Replacing X by the repeated blow-down
of all exceptional divisors, we may assume that it has no exceptional divisor. Then, by the
deformation theory of the node (cf [Liu], 10.3.22), the completed local ring of a singular point
x ∈ Xk is ÔX,x ' R[[a, b]]/(ab− πn) for some n ≥ 2. By example 1.4.2, blowing-up [n/2] times
the singularity leads to a regular scheme X ′ whose special fibre has n− 1 new projective lines of
self-intersection −2. This is the minimal regular model of C, which is therefore semistable.
(3) ⇒ (1) : let X be the minimal regular model of C. Consider the family of all components
of the special fibre that are projective lines of self-intersection −2. A connected configuration
of such lines is either topologically a circle, or a segment. Since g ≥ 2, the first possibility can
not occur. It follows that such a configuration has positive Euler-Poincaré characteristic, so by
theorem 1.4.7, the contraction of these lines is a normal surface with nodal singularities. �

2.2 Proof of semistable reduction in char. 0

Theorem 2.2.1 Assume that the residue field k has characteristic 0. Let X be the minimal
regular model with normal crossings of C and let n1, . . . , nr be the multiplicities of the irreducible
components of Xk. Let n be a common multiple of n1, . . . , nr and R′ = R[ρ]/(ρn − π). Then the
normalization of X ×R R′ is semistable.

The key fact is that in residue characteristic 0, divisors with normal crossings have a partic-
ularly simple local shape. This is due to the possibility to extract n-th roots.

Proof : Let x ∈ X be a closed point of Xk and let A be the completion of its local ring. We
will use two facts about A : firstly, since k is algebraically closed of characteristic 0 and A is
complete, it follows from Hensel’s lemma that one can extract n-th roots in A for all integers
n ≥ 1. Note that by the same argument R contains all roots of unity. Secondly, since A is a
regular nœtherian local ring, it is a unique factorization domain, and each system of parameters
(f, g) is composed of prime elements.

Since (Xk)red is a normal crossings divisor, we have two possibilities. The first possibility
is that

√
π = (f) for some system of parameters (f, g). In this case f is the only prime factor

of π, so π = ufa for some unit u ∈ A. Since k is algebraically closed of characteristic 0 and A is
complete, one sees that u is an a-th power in A so that changing f if necessary we have π = fa.
Then one checks that the natural map R[[u, v]]/(ua − π) → A taking u to f and v to g is an
isomorphism. Here a is the multiplicity of the component of Xk containing x, so by assumption
n = am for some integer m. Then

A⊗R R′ ' R′[[u, v]]/(ua − ρam) ' R′[[u, v]]/(Π(u− ζρm))

with the product ranging over the a-th roots of unity ζ. The normalization of this ring is the
product of the normal rings R′[[u, v]]/(u − ζρm) ' R′[[v]] so the normalization of X ×R R′ is
smooth at all points lying over x.

The second possibility is that
√

π = (fg) for some system of parameters (f, g). In this case
f and g are the only prime factors of π, so π = ufagb for some unit u ∈ A which as above may

8



be chosen to be 1. Thus π = fagb and one checks that the natural map R[[u, v]]/(uavb−π) → A
taking u to f and v to g is an isomorphism. Again a and b are the multiplicities of the two
components at x. Let d = gcd(a, b), a = dα, b = dβ, n = dαβm. Then as above the normalization
of A ⊗R R′ is the product of the normalizations of the rings R′[[u, v]]/(uαvβ − ζραβm) for all
d-th roots of unity ζ. If we introduce ξ ∈ R such that ξαβ = ζ then the normalization is the
morphism

A = R′[[u, v]]/(uαvβ − ζραβm) → B = R′[[x, y]]/(xy − ξρm)

given by u 7→ xβ and v 7→ yα. Indeed, the ring B is normal and one may realize it in the fraction
field of A by choosing i, j such that iα + jβ = 1 and setting

x = uj(ξαραm/v)i and y = vi(ξβρβm/u)j .

�

2.3 Generalized jacobians

Let X be an arbitrary connected projective curve over an algebraically closed field k. It can be
shown that the identity component Pic0(X) of the Picard functor is representable by a smooth
connected algebraic group called the generalized jacobian of X and denoted Pic0(X). In this
subsection, which serves as a preparation for the next subsection, we will give a description of
Pic0(X). The first feature of Pic0(X) which is readily accessible is its tangent space at the
identity :

Lemma 2.3.1 The tangent space of Pic0(X) at the identity is canonically isomorphic to H1(X, OX).

Proof : Let k[ε], with ε2 = 0, be the ring of dual numbers and let X[ε] := X ×k k[ε]. Consider
the exact sequence

0 −→ OX
x7→1+εx−→ O×X[ε] −→ O×X −→ 0 .

In the associated long exact sequence, the map H0(O×X[ε]) → H0(O×X) is an isomorphism since the
two groups contain nothing else but the invertible constant functions. It follows that the kernel
of the morphism H1(O×X[ε]) → H1(O×X) is isomorphic to H1(X, OX). Since H1(O×X) = Pic(X)
and H1(O×X[ε]) = Pic(X[ε]), the kernel is by definition the tangent space at the identity. �

In order to go further into the structure of Pic0(X), we introduce an intermediary curve X ′

sandwiched between the reduced curve Xred and its normalization X̃. This curve is obtained
topologically as follows. Look at all points x ∈ Xred with r ≥ 2 preimages x̃1, . . . , x̃r in X̃, and
glue these preimages transversally. The curve X ′ may be better described by its structure sheaf
as a subsheaf of O eX : its functions are the functions on X̃ taking the same value on x̃1, . . . , x̃r

for all points x as above. Thus X ′ has only ordinary singularities, that is to say singularities that
locally look like the intersection of the coordinate axes in some affine space Am. Note that the
integer m, called the multiplicity, may be recovered as the dimension of the tangent space at the
ordinary singularity. The curve X ′ is called the curve with ordinary singularities associated to
X. It is also the largest curve between Xred and X̃ which is universally homeomorphic to Xred.
To sum up we have the picture :

X̃ → X ′ → Xred → X .

By pullback, we have morphisms Pic0(X) → Pic0(Xred) → Pic0(X ′) → Pic0(X̃).

Lemma 2.3.2 The morphism Pic0(X) → Pic0(Xred) is surjective with unipotent kernel of di-
mension dim H1(X, OX)− dim H1(Xred,OXred

).
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Proof : Let I be the ideal sheaf of Xred in X, i.e. the sheaf of nilpotent functions on X. Let
Xn ⊂ X be the closed subscheme defined by the sheaf of ideals In+1. We use the filtration
I ⊃ I2 ⊃ . . . . For each n ≥ 1 we have an exact sequence

0 → In → (OX/In+1)× → (OX/In)× → 0

where the map In → (OX/In+1)× takes x to 1 + x. Since X is complete and connected we
have H0(X, (OX/In+1)×) = H0(X, (OX/In)×) = k×. Consequently the long exact sequence of
cohomology gives a short exact sequence

0 → H1(X, In) → H1(Xn,O×Xn
) → H1(Xn−1,O

×
Xn−1

) → 0 .

Since the base is a field, all schemes are flat and hence this description is valid after any base
change S → Spec(k). So there is an induced exact sequence of algebraic groups

0 → Vn → Pic0(Xn) → Pic0(Xn−1) → 0

where Vn is the algebraic group which is the vector bundle over Spec(k) determined by the
vector space H1(X, In). Thus Vn is unipotent ; note that the fact that Vn factors through the
identity component of the Picard functor comes from the fact that it is connected. Finally
Pic0(X) → Pic0(Xred) is surjective and the kernel is a successive extension of unipotent groups,
so it is a unipotent group. The dimension count for the dimension of the kernel is immediate by
inspection of the exact sequences. �

Remark 2.3.3 It is not true that Pic0(X) → Pic0(Xred) is an isomorphism if and only if
Xred ↪→ X is. For example if X is generically reduced, i.e. the sheaf of nilpotent functions has
finite support, then Pic0(X) ' Pic0(Xred).

Recall that the arithmetic genus of a projective curve over a field k is defined by the equality
pa(X) = 1− χ(OX) where χ is the Euler-Poincaré characteristic.

Lemma 2.3.4 The morphism Pic0(Xred) → Pic0(X ′) is surjective with unipotent kernel of di-
mension pa(Xred) − pa(X ′). Moreover, pa(Xred) = pa(X ′) if and only if X ′ → Xred is an
isomorphism.

Proof : Recall that the morphism h : X ′ → Xred is a homeomorphism. We have an exact
sequence

0 → (OXred
)× → (h∗OX′)× → F → 0

where the cokernel F has finite support, hence no higher cohomology. Since h is bijective and the
curves Xred, X ′ are complete and connected we have H0(Xred, (OXred

)×) = H0(X ′, (OX′)×) = k×

so the long exact sequence of cohomology gives

0 → H0(Xred,F) → H1(Xred, (OXred
)×) → H1(X ′, (OX′)×) → 0 .

Moreover H0(Xred,F) = ⊕OX′,x′/OX,x where the direct sum runs over the non-ordinary singular
points of Xred, and x′ is the unique point above x. Denoting by mx the maximal ideal of the
local ring of x, it is immediate to see that the inclusion 1+mx′ → OX′,x′ induces an isomorphism
OX′,x′/OXred,x ' (1+mx′)/(1+mx). Using the fact that OX′,x′/mx is an artinian ring, one may
see that there is an integer r ≥ 1 such that (mx′)r ⊂ mr. Then one introduces a filtration of
(1 + mx′)/(1 + mx) and proves as in the proof of lemma 2.3.2 that the algebraic group U that
represents H0(Xred,F) is unipotent. We refer to [Liu], lemmas 7.5.11 and 7.5.12 for the details of
these assertions. Finally the exact sequence above induces an exact sequence of algebraic groups

0 → U → Pic0(Xred) → Pic0(X ′) → 0

with U unipotent. The proof of the final statement about the dimension of the kernel can be
found in [Liu], lemma 7.5.18. �
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Lemma 2.3.5 The morphism Pic0(X ′) → Pic0(X̃) is surjective with toric kernel of dimension
µ− c + 1, where µ is the sum of the excess multiplicities mx − 1 for all ordinary multiple points
x ∈ X ′ and c is the number of connected components of X̃.

Proof : Write π : X̃ → X ′ for the normalization map. We have an exact sequence

0 → (OX′)× → (π∗O eX)× → F → 0

where the cokernel F has finite support, hence no higher cohomology. Let c be the number of
connected components of X̃. The long exact sequence of cohomology gives

0 → k× → (k×)c → H0(X, F) → H1(X ′, (OX′)×) → H1(X ′, (π∗O eX)×) → 0 .

One has the following supplementary information : the map k× → (k×)c is the diagonal inclusion,
the sheaf F is supported at all ordinary multiple points and H0(X, F) is the sum ⊕x∈X′ (k×)mx−1

over all these points, and H1(X ′, (π∗O eX)×) = H1(X̃, (O eX)×) since π is affine. As above, these
statements are valid after any base change S → Spec(k), so we obtain an induced exact sequence
of algebraic groups

0 → Gm → (Gm)c → Π (Gm)mx−1 → Pic0(X ′) → Pic0(X̃) → 0

and this proves the lemma. �

2.4 Relation with semistable reduction of abelian varieties

Let C be a smooth geometrically connected curve over K, of genus g ≥ 2. Let X be the minimal
regular model of C. Its special fibre Xk may be singular, possibly nonreduced and we have seen
the structure of its generalized jacobian in the previous subsection. This algebraic group turns
out to be tightly linked to the reduction type of C. In fact, quite generally, classical results of
Chevalley imply that any smooth connected commutative algebraic group over an algebraically
closed field is a product of an abelian variety, a torus and a connected smooth unipotent group.
In this section, following Deligne and Mumford, we will prove the following theorem :

Theorem 2.4.1 Let C be a smooth geometrically connected curve over K, of genus g ≥ 2, with
a K-rational point. Let X be the minimal regular model of C. Then C has stable reduction
over R if and only if Pic0(Xk) has no unipotent subgroup.

Proof : Assume that C has stable reduction. Then Xk is reduced and has only nodal singulari-
ties, by proposition 2.1.1, so it is equal to its associated curve with ordinary singularities. Since
the normalization of Xk is a smooth curve, its generalized jacobian is an abelian variety. Hence
it follows from lemma 2.3.5 that Pic0(Xk) is an extension of an abelian variety by a torus, so it
has no unipotent subgroup.

Conversely, assume that Pic0(Xk) has no unipotent subgroup. By lemma 2.3.2 the morphism
Pic0(Xk) → Pic0((Xk)red) is an isomorphism. Thus by lemma 2.3.1 we have H1(Xk,OXk

) =
H1((Xk)red,O(Xk)red), in other words Xk and its reduced subscheme have equal Euler-Poincaré
characteristics. Let E1, . . . , Er be the irreducible components of Xk and d1, . . . , dr their multi-
plicities. By the adjunction formula of theorem 1.3.4 we get

Σ diEi · (Σ diEi + K) = Σ Ei · (Σ Ei + K)

where K is a canonical divisor of X/R. Since
∑

diEi = Xk is in the radical of the intersection
form, we obtain

Σ (di − 1)Ei ·K = ΣEi · Σ Ei .
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Now assume that di > 1 for some i. Then
∑

Ei 6= Xk and hence
∑

Ei ·
∑

Ei < 0, because the
intersection form is negative semi-definite with isotropic cone generated by Xk. Therefore by the
above equality, we must have Ei0 ·K < 0 for some i0. Since also Ei0 · Ei0 < 0, we have

−2 ≥ Ei0 · Ei0 + Ei0 ·K = Ei0 · (Ei0 + K) = −2χ(Ei0) ≥ −2 .

Finally χ(Ei0) = −1, so Ei0 is a projective line with self-intersection −1. This is impossible since
X is the minimal regular model. It follows that di = 1 for all i, hence Xk is reduced. Again
since Pic0(Xk) has no unipotent subgroup, by lemma 2.3.4 the curve Xk has ordinary multiple
singularities. Since Xk lies on a regular surface, the dimension of the tangent space at all points
is less than 2, hence the singular points are ordinary double points. This proves that C has
stable reduction over R. �

We can now state the stable reduction theorem in full generality, and we will indicate how
Deligne and Mumford deduce it from the above theorem (see [DM], corollary 2.7).

Theorem 2.4.2 Let C be a smooth geometrically connected curve over K, of genus g ≥ 2. Then
there exists a finite field extension L/K such that the curve CL has a stable model. Furthermore,
this stable model is unique.

The unicity statement means that if CL and CM have stable models for some finite field
extensions L,M then these models become isomorphic in the ring of integers of N , for all fields
N containing L and M . This fact follows directly from the proof of the implication (3) ⇒ (1)
of proposition 2.1.1. Indeed, if C has stable reduction, the stable model is determined uniquely
as the blow-down of all chains of projective lines with self-intersection −2 in the special fibre of
the minimal regular model of C.

The proof of the existence part given in the article [DM] requires much more material from
algebraic geometry, in particular it uses results on Néron models of abelian varieties. We give the
sketch of the argument, for the readers acquainted with these notions. To prove the theorem, we
may pass to a finite field extension and hence assume that C has a K-rational point. Moreover,
a result of Grothendieck [SGA7] asserts that after a further finite field extension (again omitted
from the notations), the Néron model J of the jacobian J = Pic0(C/K) has a special fibre Jk

without unipotent subgroup. Now, let X be the minimal regular model of C over the ring of
integers R of K. By properness there is a section Spec(R) → X that extends the rational point
of C, and the corresponding k-point is regular (remark 1.4.3). In particular, this section hits the
special fibre in a component of multiplicity 1. Under these assumptions, by a theorem of Raynaud
[Ray], the Picard functor Pic0(X/R) is isomorphic to J (in particular, it is representable). It
follows that the special fibre of Pic0(X/R), in other words Pic0(Xk), has no unipotent subgroup.
By theorem 2.4.1, C has stable reduction.

3 Application to moduli of curves and covers

Let g ≥ 2 be a fixed integer and let Mg be the moduli stack of stable curves of genus g.

3.1 Automorphisms of stable curves

As a preparation for the next subsections, we need some preliminaries concerning automorphisms
of stable curves. Not just the automorphism groups, but also the automorphism functors, are in-
teresting. Even more generally, if X, Y are stable curves over a scheme S, then by Grothendieck’s
theory of the Hilbert scheme and related functors, the functor of isomorphisms between X and
Y is representable by a quasi-projective S-scheme denoted IsomS(X, Y ). It is really this scheme
that we want to describe.
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Lemma 3.1.1 Let X be a stable curve over a field k. Then, the group of automorphisms of X/k
is finite and the group of global vector fields Ext0(ΩX/k,OX) is zero.

Proof : Let S be the set of singular points of X and let π : X̃ → X be the normalization
morphism. Let A be the group of automorphisms of X and let A0 be the subgroup of those
automorphisms ϕ such that for all x ∈ S, we have ϕ(x) = x and ϕ preserves the branches at x.
Since S is finite, A0 has finite index in A and hence it is enough to prove that A0 is finite.
Then elements of A0 are the same as automorphisms of X̃ acting trivially on π−1(S). Let us
call the points of π−1(S) marked points. Since X is connected, the components of X̃ are either
smooth curves of genus g ≥ 2 with maybe some marked points, or elliptic curves with at least
one marked point, or rational curves with at least three marked points. Each of these has finitely
many automorphisms, hence A0 is finite.

A global vector field D on X is the same as a global vector field D̃ on X̃ which vanishes at all
marked points. We proceed again by inspection of the three different types of components of X̃.
It is known that smooth curves of genus g ≥ 2 have no vector field, elliptic curves have no vector
field vanishing in one point, and smooth rational curves ones have no vector field vanishing in
three points. Hence D̃ = 0 and D = 0. �

The following result proves that the stack Mg is separated :

Theorem 3.1.2 Let X, Y be a stable curves over a scheme S. Then, the isomorphism scheme
IsomS(X, Y ) is finite and unramified over S.

Proof : In order to prove the lemma we may assume that S is the spectrum of an algebraically
closed field k. Then, either IsomS(X, Y ) is empty or it is isomorphic to Autk(X). Hence, it is
finite by lemma 3.1.1. Let k[ε] with ε2 = 0 be the ring of dual numbers. In order to prove that
Autk(X) is unramified, it is enough to prove that an automorphism ϕ of X ×k k[ε] which is the
identity modulo ε is the identity. Such a ϕ stabilizes each affine open subscheme Spec(A) ⊂ X
and acts there via a ring homomorphism ϕ](a) = a + λ(a)ε. Since ϕ] is multiplicative we get
that λ is in fact a derivation. By glueing on all open affines, the various λ’s define a global vector
field, which is zero by lemma 3.1.1 again. Hence ϕ is the identity. �

The stable reduction theorem for Galois covers which we will prove below is valid when the
order of the Galois group is prime to all residue characteristics. In the proof, we will use the
following lemma :

Lemma 3.1.3 Let X be a reduced, irreducible curve over a field k and let ϕ be an automorphism
of X of finite order n prime to the characteristic of k. Let x be a smooth closed point of X fixed
by ϕ. Then the action of ϕ on the tangent space to X at x is via a primitive n-th root of unity,
i.e. it is faithful.

Proof : We can assume that n ≥ 2 and that x is a rational point, passing to a finite extension
of k if necessary. Then the completed local ring of x is isomorphic to the ring of power series
k[[t]]. The action of ϕ on the tangent space to C at x is done via multiplication by some m-th
root of unity ζ, with m|n. If m 6= n, then replacing ϕ by ϕm we reduce to the case where ζ = 1.
Since ϕ is not the trivial automorphism of C, there is an integer i and a nonzero scalar a ∈ k
such that ϕ(t) = t + ati modulo ti+1. Then ϕn(t) = t + nati modulo ti+1. Since ϕn(t) = t and
n is not zero in k, this is impossible. Therefore, m = n. �

3.2 Valuative criterion for the stack of stable curves

Once it is known that Mg is separated (cf subsection 3.1), the valuative criterion of properness
for Mg is the following statement : for all discrete valuation rings R with fraction field K, and
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all K-points Spec(K) → Mg, there exists a finite field extension K ′/K such that Spec(K ′) →
Spec(K) → Mg extends to a point Spec(R′) → Mg where R′ is the integral closure of R in K ′.

Once it is known that Mg is of finite type, it is enough to verify the valuative criterion for
complete valuation rings R with algebraically closed residue field.

Finally, it is enough to test the criterion for points Spec(K) → Mg that map into some open
dense subsctack U ⊂ Mg. The deformation theory of stable curves proves that smooth curves
are dense in Mg, hence we may take U to be the open substack of smooth curves. Then, the
valuative criterion is just theorem 2.4.2.

3.3 Reduction of Galois covers at good characteristics

We now give the applications to stable reduction of Galois covers of curves (by cover we mean
a finite surjective morphism). To do this, we fix a finite group G of order n and we consider a
cover of smooth, geometrically connected curves f : C → D which is Galois with group G. We
assume as usual that the genus of C is g ≥ 2. The case where the order n is divisible by the
residue characteristic p of k brings some more complicated pathologies, and here we will rather
have a look at the case where n is prime to p. We make the following definition.

Definition 3.3.1 Let k be a field of characteristic p, and G a finite group of order n prime to p.
Let X be a stable curve over k endowed with an action of G, and for all nodes x ∈ X, let Hx ⊂ G
denote the subgroup of the stabilizer of x composed of elements that preserve the branches at x.
We say that the action is stable, or that the Galois cover X → Y := X/G is stable, if the action
of G on X is faithful and for all nodes x ∈ X, the action of Hx on the tangent space of X at x
is faithful with characters on the two branches χ1, χ2 satisfying the relation χ1χ2 = 1.

Note that the stabilizer is cyclic when it preserves the branches at x, and dihedral when some
elements of H permute the branches at x.

An extremely important consequence of the assupmtion (n, p) = 1 is that the formation of
the quotient X → X/G commutes with base change. Consequently, the definition of a stable
cover above makes sense in families, i.e. if X → S is a stable curve over a scheme S endowed
with an action of G by S-automophisms and Y = X/G, then we say that the cover X → Y is a
stable Galois cover if and only if it is stable the fibre over each point s ∈ S. Then we arrive at
the following stable reduction theorem for covers :

Theorem 3.3.2 Let G be a finite group of order n prime to the characteristic of k, the residue
field of R. Let C → D be a cover of smooth, geometrically connected curves which is Galois with
group G, and assume that the genus of C is g ≥ 2. Then after a finite extension of K, the cover
C → D has a stable model X → Y over R. Furthermore, this model is unique.

Proof : By the stable reduction theorem, there exists a finite field extension L/K such that CL

has a stable model X. Replacing K by L for notational simplicity, we reduce to the case L = K.
Then by unicity of the stable model and by abstract nonsense, the group action extends to an
action of G on X by R-automorphisms. By lemma 3.1.2, the induced action of G on the special
fibre Xk is faithful : indeed, if ϕ ∈ G has trivial image in Autk(X), then by the property of
unramification of the automorphism functor, it has trivial image in AutR/mn(X ⊗R R/mn) for
all n ≥ 1, so since R is complete, it has trivial image in AutR(X). We define Y = X/G.

Let x ∈ Xk be a nodal point. We will first prove that the subgroup of the stabilizer of x
composed of elements that preserve the branches at x acts faithfully on the tangent space TXk,x.
Let N be the kernel of this action, then N acts trivially on the whole irreducible components
containing x, as one sees by applying lemma 3.1.3 to the normalization of Xk. Since Xk is
connected, it follows that N acts trivially on Xk, hence N = 1. As far as the characters on
the two branches are concerned, we may pass to the completion of the local ring at x which has
the form O = R[[a, b]]/(ab − πn) for some n ≥ 1. Then the tangent action on the branches is
obviously via multiplication by inverse roots of unity of order |H|. �

14



Moreover, one can prove, using deformation theory, that a stable Galois cover of curves over
k can be deformed into a smooth curve over R with faithful G-action. For details about this
point, we refer for example to [BR].

In the case where the order of G is divisible by the residue characteristic p, things are much
more complicated. We will conclude by a simple example, which gives an idea of the local
situation around a node of the special fibre. Assume that R contains a primitive p-th root of
unity ζ. We look at the affine R-curve X with function ring R[x, y]/(xy − a), for some fixed a
in the maximal ideal of R. We consider the group G = Z/pZ, with generator σ, and the action
on a neighbourhood of the node of Xk given by

σ(x) = ζx + a and σ(y) =
y

ζ + y
.

Then the reduced action is given by σ(x) = x and σ(y) = y/(1 + y), hence it is faithful on
one branch but not on the other. Apparently some information on the group action is lost in
reduction, but it is not clear what to do in order to recover it. At the moment, no "reasonable"
stable reduction theorem for covers at "bad" characteristics is known.
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