Finite irreducible monodromy group for Lauricella's F_C

Yoshiaki GOTO

(Otaru University of Commerce, Japan)

February 21, 2020 Monodromy and Hypergeometric Functions We consider conditions when the monodromy group for F_C is finite irreducible.

Remark

In [Bod (2012)], the algebraicity condition for F_C is obtained from the result [Beukers (2010)] for algebraic *A*-hypergeometric functions.

In this talk, I will give another approach based on the monodromy group.

Contents

- Lauricella's hypergeometric function F_C , basic facts;
- Fundamental group of the complement of the singular locus;
- Monodromy group and its finiteness condition.

Lauricella's F_C

$$F_C(a, b, c_1, \dots, c_n; x_1, \dots, x_n) = \sum_{m_1, \dots, m_n=0}^{\infty} \frac{(a)_{m_1 + \dots + m_n}(b)_{m_1 + \dots + m_n}}{(c_1)_{m_1} \cdots (c_n)_{m_n} m_1! \cdots m_n!} x_1^{m_1} \cdots x_n^{m_n}$$

$$\left(\begin{array}{c} a, b, c = (c_1, \dots, c_n) : \text{parameters} \\ x = (x_1, \dots, x_n) : \text{variables} \\ (\alpha)_m = \alpha(\alpha + 1) \cdots (\alpha + m - 1) \end{array}\right)$$

It converges in

$$D_C = \left\{ (x_1, \dots, x_n) \in \mathbb{C}^n \ \middle| \ \sum_{k=1}^n \sqrt{|x_k|} < 1 \right\}.$$

In the case of n = 2, it is also called Appell's F_4 .

Lauricella	F_A	F_B	F_C	F_D
Appell	F_2	F_3	F_4	F_1

Lauricella's $F_C(a, b, c; x)$ satisfies differential equations

$$[\theta_k(\theta_k + c_k - 1) - x_k(\theta + a)(\theta + b)] f(x) = 0 \quad (k = 1, \dots, n),$$

where $\partial_k = \frac{\partial}{\partial x_k}$, $\theta_k = x_k \partial_k$, $\theta = \theta_1 + \dots + \theta_n$. We consider the system $E_C(a, b, c)$ generated by them.

Fact ([Hattori-Takayama (2014)])

(i) rank of
$$E_C = 2^n$$
.

(ii) The singular locus is

$$S = \left(\prod_{k=1}^{n} x_k \cdot \prod_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^{n} \varepsilon_k \sqrt{x_k}\right) = 0\right) \subset \mathbb{C}^n.$$

 $\begin{array}{c} & \downarrow \\ x \in \mathbb{C}^n - S, \\ Sol_x : \text{ the space of local solutions to } E_C(a, b, c) \text{ around } x \\ \Longrightarrow \dim Sol_x = 2^n. \end{array}$

Fundamental group

We set $X = \mathbb{C}^n - S$. Recall that the defining equation of S is

$$\prod_{k=1}^{n} x_k \cdot \prod_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^{n} \varepsilon_k \sqrt{x_k} \right).$$

Note that

$$R(x) = \prod_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^n \varepsilon_k \sqrt{x_k} \right)$$

is an irreducible polynomial in x_1, \ldots, x_n of degree 2^{n-1} .

We put
$$S^{(n)}=(R(x)=0)\subset\mathbb{C}^n.$$
 Then,
 $S=(x_1=0)\cup\cdots\cup(x_n=0)\cup S^{(n)}.$

Hypersurface $S^{(n)}$

$$S^{(n)} = (R(x) = 0), \quad R(x) = \prod_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^n \varepsilon_k \sqrt{x_k} \right)$$

$$\boxed{n = 1} \quad R(x_1) = (1 - \sqrt{x_1})(1 + \sqrt{x_1}) = 1 - x_1.$$

$$\boxed{n = 2} \quad R(x_1, x_2) = (1 - \sqrt{x_1} - \sqrt{x_2})(1 + \sqrt{x_1} - \sqrt{x_2})$$

$$\cdot (1 - \sqrt{x_1} + \sqrt{x_2})(1 + \sqrt{x_1} + \sqrt{x_2})$$

$$= x_1^2 + x_2^2 - 2x_1x_2 - 2x_1 - 2x_2 + 1.$$

n=3

$$R(x_1, x_2, x_3) = (1 - \sqrt{x_1} - \sqrt{x_2} - \sqrt{x_3})(1 + \sqrt{x_1} - \sqrt{x_2} - \sqrt{x_3}) \cdots$$

= $(2(x_1^2 + x_2^2 + x_3^2 + 1) - (x_1 + x_2 + x_3 + 1)^2)^2 - 64x_1x_2x_3.$

If $n \geq 3$, then $S^{(n)}$ has singularities.

$$\dot{x} = \left(\frac{1}{2n^2}, \dots, \frac{1}{2n^2}\right) \in X$$
: a base point.

Theorem 1 ([G. (2016)],[G.-Kaneko (2018)],[Terasoma; arXiv:1803.06609])

 $\pi_1(X, \dot{x})$ is presented as follows.

Generators | n+1 loops:

$$\rho_0$$
: the loop turning the divisor $S^{(n)} = (R(x) = 0)$
around the point $\left(\frac{1}{n^2}, \dots, \frac{1}{n^2}\right)$,

 ρ_k : the loop turning the divisor $(x_k = 0)$ $(1 \le k \le n)$.

Relations

(I) $[\rho_i, \rho_j] = 1$ for $1 \le i, j \le n$; (II) $(\rho_0 \rho_k)^2 = (\rho_k \rho_0)^2$ for $1 \le k \le n$; (III) $[(\rho_{i_1} \cdots \rho_{i_p})\rho_0(\rho_{i_1} \cdots \rho_{i_p})^{-1}, (\rho_{j_1} \cdots \rho_{j_q})\rho_0(\rho_{j_1} \cdots \rho_{j_q})^{-1}] = 1$ for $I = \{i_1, \dots, i_p\}, J = \{j_1, \dots, j_q\} \subset \{1, \dots, n\}$ with $p, q \ge 1, p + q \le n - 1$ and $I \cap J = \emptyset$. (I) $[\rho_i, \rho_j] = 1$ (II) $(\rho_0 \rho_k)^2 = (\rho_k \rho_0)^2$ (III) $[(\rho_{i_1} \cdots \rho_{i_p})\rho_0(\rho_{i_1} \cdots \rho_{i_p})^{-1}, (\rho_{j_1} \cdots \rho_{j_q})\rho_0(\rho_{j_1} \cdots \rho_{j_q})^{-1}] = 1$

I will introduce the proof later.

Monodromy group

In [G. (2016)], the circuit transformations along $\rho_0, \rho_1, \ldots, \rho_n$ are studied in the framework of twisted homology group which is naturally isomorphic to $Sol_{\dot{x}}$.

In [G.-Matsumoto (2019)], we construct a basis of $Sol_{\dot{x}}$ under the irreducibility condition. $(c_1, \ldots, c_n \in \mathbb{Z} \text{ is allowed.})$

Fact ([Hattori-Takayama (2014)], [G.-Matsumoto (2019)])

 $E_C(a, b, c)$ is irreducible if and only if

$$a - \sum_{k=1}^{n} i_k c_k, \quad b - \sum_{k=1}^{n} i_k c_k \notin \mathbb{Z}, \qquad \forall I = (i_1, \dots, i_n) \in \{0, 1\}^n.$$

By using this basis, we obtain (simple) matrix expressions of the monodromy representation:

$$\mathcal{M}: \pi_1(X, \dot{x}) \to \mathbf{GL}_{2^n}(\mathbb{C}).$$

The monodromy representation

$$\mathcal{M}: \pi_1(X, \dot{x}) \to \mathbf{GL}_{2^n}(\mathbb{C})$$

Today, we consider the monodromy group $Mon = \mathcal{M}(\pi_1(X, \dot{x})).$

Since we have n + 1 generators $\rho_0, \rho_1, \ldots, \rho_n$ of $\pi_1(X, \dot{x})$, the monodromy group **Mon** is generated by the circuit matrices

$$M_i = \mathcal{M}(\rho_i) \in \mathbf{GL}_{2^n}(\mathbb{C}) \qquad (i = 0, 1, \dots, n).$$

The circuit matrices [G.-Matsumoto (2019)]

Notation

We set
$$\alpha = e^{2\pi\sqrt{-1}a}$$
, $\beta = e^{2\pi\sqrt{-1}b}$, $\gamma_k = e^{2\pi\sqrt{-1}c_k}$.
We regard $\{0,1\}^n$ as an index set of \mathbb{C}^{2^n} .

For $k = 1, \ldots, n$, we have

$$M_k = E_2 \otimes \cdots \otimes E_2 \otimes \begin{pmatrix} 1 & -\gamma_k^{-1} \\ 0 & \gamma_k^{-1} \\ k\text{-th} \end{pmatrix} \otimes E_2 \otimes \cdots \otimes E_2.$$

The matrix M_0 is written as

$$M_0 = E_{2^n} - {}^t(\mathbf{0}, \ldots, \mathbf{0}, \boldsymbol{v}),$$

where $oldsymbol{v} \in \mathbb{C}^{2^n}$ is a column vector whose $I ext{-th}$ entry is

$$\begin{cases} (-1)^{n} \frac{(\alpha-1)(\beta-1)\prod_{k=1}^{n} \gamma_{k}}{\alpha\beta} & (I = (0, \dots, 0)), \\ (-1)^{n+|I|} \frac{(\alpha\beta+(-1)^{|I|}\prod_{k=1}^{n} \gamma_{k}^{i_{k}})\prod_{k=1}^{n} \gamma_{k}^{1-i_{k}}}{\alpha\beta} & (I \neq (0, \dots, 0)). \end{cases}$$

Example
$$(n = 3)$$

 M_1 , M_2 , M_3 (turning $(x_k = 0)$) are upper triangular.

$$M_{1} = \begin{pmatrix} 1 & -\gamma_{1}^{-1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \gamma_{1}^{-1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\gamma_{1}^{-1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \gamma_{1}^{-1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -\gamma_{1}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \gamma_{1}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -\gamma_{1}^{-1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \gamma_{1}^{-1} \end{pmatrix}$$

 M_0 (turning the hypersurface $S^{(n)}$) is lower triangular.

$$M_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ * & * & \cdots & & \cdots & * & * \end{pmatrix}$$

The last row is $\frac{(\alpha-1)(\beta-1)\gamma_{1}\gamma_{2}\gamma_{3}}{\alpha\beta}, -\frac{(\alpha\beta-\gamma_{1})\gamma_{2}\gamma_{3}}{\alpha\beta}, -\frac{(\alpha\beta-\gamma_{2})\gamma_{1}\gamma_{3}}{\alpha\beta}, \frac{(\alpha\beta+\gamma_{1}\gamma_{2})\gamma_{3}}{\alpha\beta}, -\frac{(\alpha\beta-\gamma_{3})\gamma_{1}\gamma_{2}}{\alpha\beta}, \frac{(\alpha\beta+\gamma_{1}\gamma_{3})\gamma_{2}}{\alpha\beta}, \frac{(\alpha\beta+\gamma_{2}\gamma_{3})\gamma_{1}}{\alpha\beta}, \frac{\gamma_{1}\gamma_{2}\gamma_{3}}{\alpha\beta}.$

In general, the eigenvalues of M_0 are

$$\delta_0 = (-1)^{n-1} \gamma_1 \cdots \gamma_n \alpha^{-1} \beta^{-1} \text{ and}$$

1 (\(\emp multiplicity = 2^n - 1).

3/28

$$\mathbf{Mon} = \langle M_0, M_1, \dots, M_n \rangle \subset \mathbf{GL}_{2^n}(\mathbb{C})$$

Since the matrices M_0, M_1, \ldots, M_n depend on α , β , $\gamma_1, \ldots, \gamma_n$, we denote

$$\mathbf{Mon} = \mathbf{Mon}^{(n)} = \mathbf{Mon}^{(n)}(\alpha, \beta, \gamma).$$

Note that M_0 is a reflection ($\Leftrightarrow \operatorname{rank}(M_0 - E_{2^n}) = 1$). We also denote the special eigenvalue of M_0 as

$$\delta_0 = \delta_0^{(n)}(\alpha, \beta, \gamma) = (-1)^{n-1} \gamma_1 \cdots \gamma_n \alpha^{-1} \beta^{-1}.$$

Finite irreducible monodromy group

For Appell's F_4 (n = 2), the following fact has been known.

Fact ([Kato (1997)])

$$\begin{split} \mathbf{Mon}^{(2)}(\alpha,\beta,(\gamma_1,\gamma_2)) \text{ is finite irreducible if and only if} \\ (1) \ \mathbf{Mon}^{(1)}(\alpha,\beta,\gamma_1) \text{ and } \mathbf{Mon}^{(1)}(\alpha,\beta,\gamma_2) \text{ are finite irreducible;} \\ (2) \ (a) \text{ at least two of } \gamma_1, \gamma_2, \ \beta\alpha^{-1} \text{ are } -1, \\ \text{ or } \\ (b) \ \delta_0^{(2)}(\alpha,\beta,(\gamma_1,\gamma_2)) = -1 \quad (\Leftrightarrow \gamma_1\gamma_2\alpha^{-1}\beta^{-1} = 1). \end{split}$$

Remark

Since $Mon^{(1)}(\alpha, \beta, \gamma_i)$ is nothing but the monodromy group of Gauss' HGDE $E(a, b, c_i)$, the conditions for (1) is written in terms of a, b, c in [Schwarz (1873)].

We consider its generalization.

Main theorem

Theorem 2 ([G.; arXiv:1905.00250])

We assume $n \geq 3$. $\mathbf{Mon}^{(n)}(\alpha, \beta, \gamma)$ is finite irreducible if and only if (1) each $\mathbf{Mon}^{(1)}(\alpha, \beta, \gamma_k)$ (k = 1, ..., n) is finite irreducible; (2) at least n of $\gamma_1, ..., \gamma_n$, $\beta \alpha^{-1}$, $\delta_0^{(n)}(\alpha, \beta, \gamma)$ are -1.

Remark

The condition (2) is divided into (a) at least n of $\gamma_1, \ldots, \gamma_n$, $\beta \alpha^{-1}$ are -1, or (b) $\delta_0^{(n)}(\alpha, \beta, \gamma) = -1$ and at least n - 1 of $\gamma_1, \ldots, \gamma_n$, $\beta \alpha^{-1}$ are -1. Note that if n = 2, the 2nd line of (b) does NOT appear. Recall that M_0 is a reflection. ($\Leftrightarrow \operatorname{rank}(M_0 - E_{2^n}) = 1$). Let $\operatorname{Ref} \triangleleft \operatorname{Mon}$ be the smallest normal subgroup of Mon , which includes the reflection M_0 . Ref is called the reflection subgroup.

By using \mathbf{Ref} , we can investigate \mathbf{Mon} . (This idea is similar to [Kato (1997)].)

The reflection subgroup was introduced in [Beukers-Heckman (1989)], to study the monodromy group for ${}_{n}F_{n-1}$.

Lemma 3 ([G.-Koike (to appear)])

 $\mathbf{Ref} \text{ is finite } \iff \mathbf{Mon} \text{ is finite}$

Thus, the finiteness of \mathbf{Mon} is reduced into that of \mathbf{Ref} .

Lemma 4

If at least two of $\gamma_1, \ldots, \gamma_n$ are -1, then $\mathbf{Ref} \curvearrowright \mathbb{C}^{2^n}$ is reducible. For example, if $\gamma_{n-1} = \gamma_n = -1$, then we have a decomposition

$$\mathbf{Ref}^{(n)}(\alpha,\beta,(\gamma_1,\ldots,\gamma_{n-2},-1,-1))$$

$$\simeq \left(\mathbf{Ref}^{(n-1)}(\alpha,\beta,(\gamma_1,\ldots,\gamma_{n-2},-1))\right)^2.$$

Lemma 5

If at least one of $\gamma_1, \ldots, \gamma_n$ is -1 and $\alpha\beta^{-1}$ is -1, then $\operatorname{\mathbf{Ref}} \curvearrowright \mathbb{C}^{2^n}$ is reducible. For example, if $\gamma_n = \beta\alpha^{-1} = -1$, then we have a decomposition $\operatorname{\mathbf{Ref}}^{(n)}(\alpha, \beta, (\gamma_1, \gamma_2, \ldots, \gamma_{n-1}, -1))$ $\simeq \left(\operatorname{\mathbf{Ref}}^{(n-1)}(\alpha, \beta, (\gamma_1, \gamma_2, \ldots, \gamma_{n-1}))\right)^2$. Irreducibility

It is shown by a straightforward calculation.

Finiteness

By the lemmas, if two of $\gamma_1, \ldots, \gamma_n$, $\beta \alpha^{-1}$ are -1, then $\mathbf{Ref}^{(n)}$ is decomposed into $\mathbf{Ref}^{(n-1)} \times \mathbf{Ref}^{(n-1)}$. Applying this discussion repeatedly, we obtain

$$\mathbf{Ref}^{(n)} \simeq (\mathbf{Ref}^{(1)})^{2^{n-1}} \quad \text{or} \quad \mathbf{Ref}^{(n)} \simeq (\mathbf{Ref}^{(2)})^{2^{n-2}}$$

We can check the finiteness of $\mathbf{Ref}^{(1)}$ and $\mathbf{Ref}^{(2)}$ by (1) and the results of [Kato (1997)], respectively.

finite irreducible $\implies (1), (2)$

Lemma 6

 $\mathbf{Mon}^{(n)}(\alpha,\beta,(\gamma_1,\ldots,\gamma_n)) \text{ has a subgroup that is isomorphic to } \\ \mathbf{Mon}^{(k)}(\alpha,\beta,(\gamma_{i_1},\ldots,\gamma_{i_k})) \ (k=1,...,n-1,\ \{i_1,...,i_k\} \subset \{1,...,n\}).$

This lemma shows that " $Mon^{(n)}$: finite \implies (1)".

Lemma 7

Let $n \geq 3$ and $\mathbf{Mon}^{(n)}(\alpha, \beta, \gamma)$ be finite irreducible. For distinct $i, j, k \in \{1, \dots, n\}$, $\mathbf{Mon}^{(2)}(\alpha, \alpha \gamma_k^{-1}, (\gamma_i, \gamma_j))$ and $\mathbf{Mon}^{(2)}(\beta, \beta \gamma_k^{-1}, (\gamma_i, \gamma_j))$ are also finite irreducible.

[Sketch of Proof] This follows from

$$\begin{aligned} x_n^{-a} f(\frac{x_1}{x_n}, \dots, \frac{x_{n-1}}{x_n}, \frac{1}{x_n}) \text{ is a sol. to } E_C(a, b, c) \\ \iff f(\xi_1, \dots, \xi_n) \text{ is a sol. to } E_C(a, a - c_n + 1, (c_1, \dots, c_{n-1}, a - b + 1)) \\ \text{ and Lemma 6.} \end{aligned}$$

By using Lemma 7, we can show that at least n-2 of $\gamma_1, \ldots, \gamma_n$ are -1. We may assume $\gamma_3 = \cdots = \gamma_n = -1$. By using the finiteness conditions of

$$\begin{split} \mathbf{Mon}^{(2)}(\alpha,\beta,(\gamma_1,\gamma_2)),\\ \mathbf{Mon}^{(2)}(\alpha,\beta,(\gamma_1,-1)), \quad \mathbf{Mon}^{(2)}(\alpha,\beta,(\gamma_2,-1)), \end{split}$$

we can show that at least two of γ_1 , γ_2 , $\beta \alpha^{-1}$, $\delta_0^{(n)}$ are -1. Thus, we obtain (2).

Remark

By the proof, we can see that if $Mon^{(n)}$ is finite irreducible, then $Ref^{(n)}$ is decomposed into a direct product of $Ref^{(1)}$'s or $Ref^{(2)}$'s. The structures of them are studied in [Kato (1997)] and [Kato-Sekiguchi (2010)].

Proof of Theorem 1

Theorem 1

 $\pi_1(X, \dot{x})$ is presented as follows.

Generators n+1 loops:

$$\begin{split} \rho_0 &: \text{the loop turning the divisor } S^{(n)} = (R(x) = 0) \\ &\text{around the point } \Big(\frac{1}{n^2}, \dots, \frac{1}{n^2}\Big), \end{split}$$

 ρ_k : the loop turning the divisor $(x_k = 0)$ $(1 \le k \le n)$.

Relations

(I)
$$[\rho_i, \rho_j] = 1$$
 for $1 \le i, j \le n$;
(II) $(\rho_0 \rho_k)^2 = (\rho_k \rho_0)^2$ for $1 \le k \le n$;
(III) $[(\rho_{i_1} \cdots \rho_{i_p})\rho_0(\rho_{i_1} \cdots \rho_{i_p})^{-1}, (\rho_{j_1} \cdots \rho_{j_q})\rho_0(\rho_{j_1} \cdots \rho_{j_q})^{-1}] = 1$
for $I = \{i_1, \dots, i_p\}, J = \{j_1, \dots, j_q\} \subset \{1, \dots, n\}$
with $p, q \ge 1, p + q \le n - 1$ and $I \cap J = \emptyset$.

For n = 2 ([Kaneko (1981)]) and n = 3 ([G.-Kaneko (2018)]), we compute $\pi_1(X)$ by using the theorem of van Kampen-Zariski.

Theorem 1 for general n is shown in [Terasoma; arXiv:1803.06609] (by a more elegant method).

We consider a branched 2^n -covering

$$\phi: \mathbb{C}^n \to \mathbb{C}^n; \quad (\xi_1, \dots, \xi_n) \mapsto (x_1, \dots, x_n) = (\xi_1^2, \dots, \xi_n^2)$$

of \mathbb{C}^n . Since

$$R(\phi(\xi)) = \prod_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^n \varepsilon_k \xi_k \right),$$

 $\tilde{X}=\phi^{-1}(X)$ is the complement of hyperplanes in \mathbb{C}^n :

$$\tilde{X} = \phi^{-1}(X)$$
$$= \mathbb{C}^n - \left(\bigcup_{k=1}^n (\xi_k = 0) \cup \bigcup_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \left(1 + \sum_{k=1}^n \varepsilon_k \xi_k = 0\right)\right).$$

The restriction $\phi: \tilde{X} \to X$ is a $(\mathbb{Z}/2\mathbb{Z})^n$ -Galois covering.

 $\begin{array}{l} \phi:\tilde{X}\to X: \text{ a } (\mathbb{Z}/2\mathbb{Z})^n\text{-}\mathsf{Galois \ covering.}\\ \tilde{X}: \text{ the complement of real hyperplanes in } \mathbb{C}^n \end{array}$

We can take a 2-skeleton X
² of Salvetti complex whose cells are "compatible" with (ℤ/2ℤ)ⁿ-action.

- We write down all relations in $\pi_1(\tilde{X}_2/(\mathbb{Z}/2\mathbb{Z})^n)$, by using the 2-cells.
- \longrightarrow Theorem 1 is proved.

Salvetti complex

- ▶ a codim 0 chamber \leftrightarrow a 0-cell.
- Choose a codim 1 chamber and a codim 0 one. → We obtain a 1-cell \(\tau\) in \(\tilde{X}\). (If we take another codim 0 chamber, then we obtain another 1-cell \(\tau\).)
- Choose a codim 2 chamber and a codim 0 one. \rightarrow We obtain a 2-cell σ in \tilde{X} .
- Consider the quotient of σ by $(\mathbb{Z}/2\mathbb{Z})^n$ -action.
 - ightarrow All relations come from the quotients of such 2-cells.

(easy) example n=2

We find three 2-cells. (It is sufficient to consider $\bullet \in \mathbb{R}^n_{>0}$.) We can see $a = \rho_2$ and $\overline{b}b = \rho_0$ (in the quotient space).

$$\begin{array}{cccc}
1 & a\overline{b}\overline{c} = \overline{b}\overline{c}d \\
\hline
2 & ba\overline{b} = \overline{c}dc \\
\hline
3 & dcb = cba
\end{array}$$

By these relations, we have

$$(\rho_0 \rho_2)^2 = \overline{b} b a \overline{b} b a = \overline{b} \overline{c} d c b a$$
$$= a \overline{b} \overline{c} d c b = a \overline{b} b a \overline{b} b$$
$$= (\rho_2 \rho_0)^2.$$

Remark

To write all the relations systematically, Terasoma contracts the spanning complex (= a simply connected subcomplex) to a point.

- By using explicit matrix presentations, we can obtain a condition when the monodromy group for E_C is finite irreducible.
- ► The presentation of the fundamental group of the complement of the singular locus of *E*_{*C*} is obtained.

Thank you for your kind attention!

[Beukers-Heckman (1989)] F. Beukers and G. Heckman, Monodromy for the hypergeometric function $_{n}F_{n-1}$, *Invent. math.* **95** (1989), 325–354.

- [Beukers (2010)] F. Beukers, Algebraic A-hypergeometric functions, *Invent. math.* **180** (2010), 589–610.
- [Bod (2012)] E. Bod, Algebraicity of the Appell-Lauricella and Horn hypergeometric functions, *J. Differ. Equ.* **252** (2012), 541–566.
- [G. (2016)] Y. Goto, The monodromy representation of Lauricella's hypergeometric function F_C, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XVI (2016), 1409–1445.
- [G.; arXiv:1905.00250] Y. Goto, Lauricella's F_C with finite irreducible monodromy group; arXiv:1905.00250.

References II

[G.-Kaneko (2018)] Y. Goto and J. Kaneko, The fundamental group of the complement of the singular locus of Lauricella's F_C , J. of Singul., **17** (2018), 295–329.

- [G.-Koike (to appear)] Y. Goto and K. Koike, Picard-Vessiot groups of Lauricella's hypergeometric systems E_C and Calabi-Yau varieties arising integral representations, to appear in J. London Math. Soc; arXiv:1807.10890.
- [G.-Matsumoto (2019)] Y. Goto and K. Matsumoto, Irreducibility of the monodromy representation of Lauricella's F_C , Hokkaido Math. J. **48** (2019), 489–512.
- [Hattori-Takayama (2014)] R. Hattori and N. Takayama, The singular locus of Lauricella's F_C , J. Math. Soc. Japan **66** (2014), 981–995.

[Kaneko (1981)] J. Kaneko, Monodromy group of Appell's system (F_4) , Tokyo J. Math., **4** (1981), 35–54.

[Kato (1997)] M. Kato, Appell's F₄ with finite irreducible monodromy group, Kyushu J. Math. **51** (1997), no. 1, 125–147.

[Kato-Sekiguchi (2010)] M. Kato and J. Sekiguchi, Reflection subgroups of the monodromy groups of Appell's F_4 , Kyushu J. Math. **64** (2010), no. 2, 281–296.

[Lauricella (1893)] G. Lauricella, Sulle funzioni ipergeometriche a più variabili, *Rend. Circ. Mat. Palermo* 7 (1893) 111–158.
[Schwarz (1873)] H. A. Schwarz, Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. *J. Reine Angew. Math.* 75 (1873) 292–335.

[Terasoma; arXiv:1803.06609] T. Terasoma, Fundamental group of non-singular locus of Lauricella's F_C ; arXiv:1803.06609.