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Introduction

We consider conditions when the monodromy group for F¢ is finite
irreducible.

In [Bod (2012)], the algebraicity condition for F is obtained from
the result [Beukers (2010)] for algebraic A-hypergeometric
functions.

In this talk, | will give another approach based on the monodromy

group.

» Lauricella's hypergeometric function F¢, basic facts;
» Fundamental group of the complement of the singular locus;

» Monodromy group and its finiteness condition.
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Lauricella’s F

Fo(a,bycry ... cn; 1,0y Tp)

oo
- (@t O ttmn oy

ez
(€1)my * - (Cn)mymal- -y, 1 "

mi,...,mp=0

a,b,c = (cy,...,cp) : parameters
x = (x1,...,Ty) : variables
(@)m =a(a+1)---(a+m—1)

It converges in

De = {(ml,...,xn) eCcr

§m<1}.

In the case of n = 2, it is also called Appell’'s Fj.

Lauricella || Fu | Fg | Fo | Fp
Appeu F2 F3 F4 Fl
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Lauricella’s Fo(a, b, ¢; x) satisfies differential equations

[0k(0k + c — 1) —2p(0 +a)(0 +b)] f(z) =0 (k=1,...,n),

0
where O, = —, 0, = 23,05, 0 =01 +--- +0,,.
8xk
We consider the system FE¢(a, b, c) generated by them.

Fact ([Hattori-Takayama (2014)])

(i) rank of Ex = 2™,
(ii) The singular locus is

SZ(ﬁqjk~ H <1+Zn:€k\/ﬂ?k>=0>C(Cn.
fe=il =il

517"'7871::tl

\
zeCr -5,
Soly : the space of local solutions to E¢(a,b,c) around x
— dim Sol, = 2".
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Fundamental group

We set X = C™ — S. Recall that the defining equation of §'is

]%I:rk . Ii[ (].-% jf: ek\/EE;).
k=1 k=1

€1,mEn==21
Note that N
Riz)= ][ (1 n Zsk\/a>
€1,enmen==%1 k=1
is an irreducible polynomial in z1, ..., x, of degree 271

We put S™ = (R(z) = 0) € C". Then,

S=(@=0)U---U(z, =0)US™,
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Hypersurface S

S™ = (R@)=0), R@)= ][] <1+Zekm>

E1yeeey en==x1 k=1

R(w1) = (1 - yED)(1+ &) = 1 — a1,

[(n=2] R(zi,22) = (1 — Va1 — Va)(1 + Va1 — V/22)
(1= Vo 4+ Va) (1 + o1 + /22)

= :Bl +£L'2 — 2x129 — 221 — 229 + 1.

!

R(xz1,29,23) = (1 — /x1 — V22 — Va3) (1 + x1 — Va2 — Va3) - -
— (2(:):% + x% + x% +1)— (x1 + 22+ 23+ 1)2)2 — 6417973,

If n > 3, then S has singularities.
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1 1
T = (W’ o 2) € X: a base point.

Theorem 1 ([G. (2016)],[G.-Kaneko (2018)],[Terasoma; arXiv:1803.06609] )

m1(X, Z) is presented as follows.

n + 1 loops:

po : the loop turning the divisor Sl — (R(x) =0)
1 1
around the point <—2, ey —2),
n n
pr. : the loop turning the divisor (zx =0) (1 <k <mn).

(1) [pispjl =1 for 1 < 4,5 < mn;
(1) (popr)® = (prpo)? for 1 <k <m;
() [(osy - = - i) 0003y -+~ 0i,) " H5 (01 -+ i) P00y -+ - p3) M = 1
for I = {i1,... iy}, J = {j1,--.jq} C{L,....n}
withp,g>1,p+qg<n—1land INJ =0.

v
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(1) [pi,p;] =1
(1) (popr)?* = (prpo)?
() [(piy -~ pip)po(piy === pi) ™ (P4 -+ pig)P0(psy -+~ ps) 1 =1

[Kaneko (1981)] — n =2

[G. (2016)] n=2
— the generators
and relations (1), (I1)

[G.-Kaneko (2018)]
— relation (Ill) and n =3

Po

“C R(z) =0
[Terasoma; arXiv:1803.06609]
— n: general Um

| will introduce the proof later.
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Monodromy group

In [G. (2016)], the circuit transformations along po, p1, ..., pn are
studied in the framework of twisted homology group which is
naturally isomorphic to Sol;.

In [G.-Matsumoto (2019)], we construct a basis of Sol; under the
irreducibility condition.  (c1,...,¢, € Z is allowed.)

Fact ([Hattori-Takayama (2014)], [G.-Matsumoto (2019)])

Ec(a,b,c) is irreducible if and only if

n n
a=> inck, b= dgck €L,  VI=(i1,...,in) € {0,1}".
k=1 k=1

By using this basis, we obtain (simple) matrix expressions of the
monodromy representation:

M :m(X,z) - GL2n (C).
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The monodromy representation

M : 11(X, &) = GLgn(C)

Today, we consider the monodromy group Mon = M (m (X, Z)).

Since we have n + 1 generators pg, p1, . .., pn, of T (X, ),
the monodromy group Mon is generated by the circuit matrices

M; = M(p;) € GLyn(C)  (i=0,1,...,n).
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The circuit matrices [G.-Matsumoto (2019)]

We set o = e2™V—1a, g = 2nV=1b , — o2nv~Tek
We regard {0,1}" as an index set of C2".

For k =1,...,n, we have

1 — -1
My=E® - QE® (0 77,’“1 > RE®-- ® Fy.
k
k-th
The matrix My is written as
My = Eyn — Y(0,...,0,v),

where v € C?" is a column vector whose I-th entry is

(_l)n(afl)(ﬁfalﬂ) [TR—1 iy (I = (O, RN 0)),
—ip

(= 1)+ (f+(=1! szlﬂv?f) k=1 (I #(0,...,0)).
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My (turning the hypersurface S(™) is lower triangular.
10 0 00 0 OO
01 0 00 0 00O
00 1 00 O 00O
00 O 10 0 00O
M=100 001 0 00
00 O 0O 1 00O
00 O OO0 0 1O
x ok * ok

The last row is
(a=1)(B=1)mnyy  (@f—=7)ry (@B —=7)n7 (@B+7172)73

O[ﬁ y O[ﬂ s aﬁ ) aﬁ )
(@B =73)71172 (@B+m7v3)v2 (B +7273) 11 M7273
af ’ af ’ af ap

In general, the eigenvalues of M are

o= (1) 917057 and
1 (+ multiplicity = 2" — 1).
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Mon = (Mg, My, ..., Mn> C GL2n (C)

Since the matrices My, My, ..., M, depend on «, 3, 71, ...

we denote

Mon = Mon™ = Mon™(a, 8, 7).

Note that M is a reflection (< rank(My — Eon) = 1).
We also denote the special eigenvalue of My as

8o = 65" (@, B,7) = (=1)"y1 -y BN

77714'
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Finite irreducible monodromy group

For Appell's Fy (n = 2), the following fact has been known.

Fact ([Kato (1997)])
Mon® (a, B, (71,72)) is finite irreducible if and only if
(1) Mon™® (e, 8,~1) and Mon!(a, 3, 72) are finite irreducible;

(2) (a) at least two of 1, 72, Ba~! are —1,
or
(b) 87 (a, B, (1, 72)) = =1 (& mpa !B~ =1).

| A

Remark

Since Mon(l)(a, B,7i) is nothing but the monodromy group of
Gauss' HGDE E(a, b, ¢;), the conditions for (1) is written in terms
of a,b,c in [Schwarz (1873)].

A

We consider its generalization.
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Theorem 2 ([G.; arXiv:1905.00250])

We assume n > 3.
Mon(™ («a, 3,7) is finite irreducible if and only if

(1) each Mon™ (v, B,y (k = 1,. n) is finite irreducible;
(2) at least 1 of v1, ..., v, Bat, 65 (a, B, ) are —1.

The condition (2) is divided into
(a) at least n of 71,...,7n, Ba~t are —1,
or
(b) 8§ (e, B,7) = ~1 and
at least n — 1 of v1,...,7,, Ba~ ! are —1.
Note that if n = 2, the 2nd line of (b) does NOT appear.
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Reflection subgroup

Recall that M is a reflection. (< rank(My — Ean) = 1).
Let Ref <«Mon be the smallest normal subgroup of Mon, which
includes the reflection M. Ref is called the reflection subgroup.

By using Ref, we can investigate Mon.
(This idea is similar to [Kato (1997)].)

The reflection subgroup was introduced in [Beukers-Heckman (1989)],
to study the monodromy group for , Fj_1.

Lemma 3 ([G.-Koike (to appear)])

Ref is finite <= Mon is finite

Thus, the finiteness of Mon is reduced into that of Ref.
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If at least two of 71,...,7, are —1, then Ref ~ C?" is reducible.
For example, if v,—1 = 7, = —1, then we have a decomposition

Ref(n)(aaﬁa (717 ocoo a’yn—Qy _17 _1))

2
~ (Ref™ (@, 8, (1, ., 32, —1))) -

| A\

Lemma 5

If at least one of v1,...,7, is —1 and a8~ ! is —1, then

Ref ~ C?" is reducible.

For example, if v, = Ba~! = —1, then we have a decomposition

Ref(n) (a, B, (’}/17 Y25 -+ Yn—1, _1))
(n—1) ?
(o (Ref (auﬁ) (717727"'7771—1))) .

N
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(1), (2) = finite irreducible

Irreducibility

It is shown by a straightforward calculation.

Finiteness

By the lemmas, if two of v, ..., vx, Boﬁl are —1, then Ref(™ is
decomposed into Ref(" 1) x Ref(™ 1),
Applying this discussion repeatedly, we obtain

27171 2n72

Ref(™ ~ (Ref() or Ref(™ ~ (Ref®)

We can check the finiteness of Ref(!) and Ref(?
by (1) and the results of [Kato (1997)], respectively. O
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finite irreducible = (1), (2)

Mon(" (a, B, (71 ---,7n)) has a subgroup that is isomorphic to
a, By (Yigs - Yip)) (k=1,..,n—1, {i1, ...,ix} C {1,...,n}).

)
Mon ¥ (

This lemma shows that “Mon(™: finite = (1)".

Let > 3 and Mon(™(«, 3,7) be finite irreducible.
For distinct 4,7,k € {1,...,n}, 1\/Ion(2)(047 afyk_l, (7i,7;)) and
Mon'® (8, By, %, (7i,7;)) are also finite irreducible.

[Sketch of Proof] This follows from

1 1
m,;“f(%,...,xz l,x—) is a sol. to Ec(a,b,c)
n n n

— f(&,...,&) isasol. to Ec(a,a—cp, +1,(c1,...,¢cp—1,a — b+ 1))
and Lemma 6. O
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By using Lemma 7, we can show that at least n — 2 of v1,..., 7,
are —1. We may assume y3 = --- =, = —1.
By using the finiteness conditions of

Mon® (a, B, (71,72))
MOH(Q)(avﬁa (71571))7 Mon(z)(a7ﬁ7 (72’71))’

)

we can show that at least two of 71, 72, Ba™!, (56” are —1.

Thus, we obtain (2). O

By the proof, we can see that
if Mon(™ is finite irreducible, then Ref(™ is decomposed into a
direct product of Ref)'s or Ref?'s.

The structures of them are studied in [Kato (1997)] and
[Kato-Sekiguchi (2010)].
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Proof of Theorem 1

m1(X, &) is presented as follows.

n + 1 loops:

po : the loop turning the divisor sy — (R(xz) =0)
1 1
around the point <—2, ey —2>,
n n
pk : the loop turning the divisor (xx =0) (1 <k <n).

() [pispjl =1for1<i,j<nm;
(1) (popr)* = (prpo)? for 1 < k <m;
() [(piy -+ pip)po(piy -+ piy) Y sy -+ pi)po(pjy - pj) 1] =1

fOFI:{’L'l,...,ip},J:{jl,...,jq}C{l,...,n}
withp,g>1,p+qg<n—1land INJ =0.
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n=2&n=3

n=3: X N3 (plane) — Ly Lo I

Y
(by taking suitable coordinates)
n =2

s {

£
-1
Q
Po
’”C R(z) =0

Uﬂ2 n -

For n = 2 ([Kaneko (1981)]) and n = 3 ([G.-Kaneko (2018)]), we
compute 71 (X) by using the theorem of van Kampen-Zariski. J
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Theorem 1 for general n is shown in [Terasoma; arXiv:1803.06609]
(by a more elegant method).

We consider a branched 2"-covering

p:C"=C" (&,...,.&n) — (x1,...,2py) = (5%,,52)

of C™. Since
RoE) = I (1+ Y en),
€1,-.,en==E1 k=1

X = ¢~ 1(X) is the complement of hyperplanes in C":

X =9¢"1(X)

:(Cn_<U(§k:O)U U <1+Z€kfk=0)>.
k=

1 E1,eEn==1 k=1

The restriction ¢ : X — X is a (Z/27)"-Galois covering.
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¢ X — X : a (Z/27)"-Galois covering.
X : the complement of real hyperplanes in C™

» We can take a 2-skeleton Xg of Salvetti complex whose cells
are “compatible” with (Z/27)™-action.

> (X)) ~m (X2/(Z/22)").

» We write down all relations in 7 (Xg/(Z/QZ)”), by using the
2-cells.

— Theorem 1 is proved.
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Salvetti complex

» a codim 0 chamber +— a 0-cell.
» Choose a codim 1 chamber and a codim 0 one.
— We obtain a 1-cell 7 in X. (If we take another codim 0
chamber, then we obtain another 1-cell 7.)
» Choose a codim 2 chamber and a codim 0 one.
— We obtain a 2-cell o in X.
» Consider the quotient of o by (Z/27)™-action.
— All relations come from the quotients of such 2-cells.
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’ (easy) example‘ n=2

We find three 2-cells. (It is sufficient to consider @ € R”.)
We can see a = py and bb = py (in the quotient space).

abe = bed
bab = cdc
dcb = cba

By these relations, we have
(pop2)? = bbabba = bedcha
= abcdch = abbabb
= (02/)0)2-

To write all the relations systematically, Terasoma contracts the
spanning complex (= a simply connected subcomplex) to a point.
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> By using explicit matrix presentations, we can obtain a
condition when the monodromy group for E¢ is finite
irreducible.

» The presentation of the fundamental group of the
complement of the singular locus of E¢ is obtained.

Thank you for your kind attention!
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