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Algebraic functions and the Newton-Puiseux algorithm

Definition

A function y(x) is said to be an algebraic function if it satisfies
f (x , y(x)) = 0, where f (x , y) ∈ C[x , y ] is a polynomial in x and y .

Example

f (x , y) = xp − yq = 0 has the solution y = x
p
q . In fact, ”q”

independent solutions to the algebraic equation
f (x , y) = xp − yq = 0, are given by

yk(x) = e2πi p
q
kx

p
q for k = 0, . . . , q − 1.

where we assume p and q are coprime.
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Let f (x , y) =
∑

aαβx
αyβ be a convergent power series and

without loss of generality, assume that f is y -general (say of order
m > 0, i .e a0m 6= 0 and a0i = 0 for i < m). Define the carrier of
f as

∆(f ) := {(α, β) ∈ N2| aαβ 6= 0}.
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We now want to find the line which we begin the process. It is the
steepest possible line through the lowest point of the carrier on the
β-axis.
For each point p of the carrier of f we consider the positive
quadrant p + (R+)2 moved up to p. From the union of all these
displaced with quadrants we construct the convex hull

conv(∪p∈∆(f )(p + (R+)2))

The boundary consists of a compact polygonal path (where all the
segments have negative slope) and two half lines. This compact
polygonal path is called the Newton polygon of f .
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Consider f (x , y) given by

f (x , y) =
∑

α+µ0β=v

aαβx
αyβ +

∑
α+µ0β>v

aαβx
αyβ = f̃ (x , y) + h(x , y)

(1.1)
Such an f (x , y) has the following Newton polygon:

Mutlu KOÇAR
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α

β

(v , 0)

(0,m)

The line(dotted) equation is : α + µ0β = v .
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v is the intercept on the α-axis of the line through (0,m) with
slope − 1

µ0
.

For the first approximate solution, put y = cxµ0 in f̃ (x , y) = 0.

f̃ (x , cxµ0) =
∑

α+µ0β=v

aαβx
αcβxµ0β

= xv
∑

α+µ0β=v

aαβc
β = xvg(c) = 0

where g is a polynomial of degree m.
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As aαβ 6= 0, g(c) has a non-zero root c0.
Thus, y0 = c0x

µ0 is a solution to the equation f̃ (x , y) = 0.
Since µ0 ∈ Q>0, µ0 = p0

q0
with gcd(p0, q0) = 1.

Set x1 := x
1
q0 and to improve the approximate solution put

y = xp0
1 (c0 + y1) in throughout f (x , y).
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This gives us a new power series f (xq0
1 , xp0

1 (c0 + y1)).
xvq0

1 divides this power series by (1.1)

f (xq0
1 , xp0

1 (c0 + y1)) = xvq0
1 f1(x1, y1).

f1(x1, y1) : y1−general of order m1 ≤ m.
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Again, construct the Newton polygon of f1. Let − 1
µ1

be its

steepest negative slope, then µ1 = p1
q1

and obtain an approximate
solution y = c1x

µ1 such that g1(c1) = 0.

Set x2 := x
1
q1

1 , and improve the solution by putting
y1 = xp1

2 (c1 + y2) throughout f1(x1, y1) = 0.
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Thus,
f1(xq1

2 , xp1
2 (c1 + y2)) = xv1q1

2 f2(x2, y2)

f2 : y2−general of order m2 ≤ m1.
Continuing this process eventually yields a sequence of
approximate solutions

y = xµ0(c0 + xµ1
1 (c1 + xµ2

2 (c2 + · · · )))

= c0x
µ0 + c1x

µ0xµ1
1 + c2x

µ0xµ1
1 xµ2

2 + · · ·

The process breaks off when the Newton polygon of fj is a single
point for some j .
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Trinomial algebraic function

Consider a general trinomial equation given by

ϕ(x , y) = yn + xyp − 1 = 0, (n > p). (2.1)

Remark

The singular points(discriminant) of the equation (2.1) are given by

xn = (−1)p
nn

ppqq
, (q = n − p).

If y(x) is a solution of (2.1), then

yk(x) = εky((εk)px)

is also a solution to ϕ(x , y) = yn + xyp − 1 = 0, where εk = e
2πik
n

for k = 0, 1, . . . n − 1.
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Theorem

(Mellin Inversion Theorem) Let z = σ + it ∈ C.

(i) Suppose f (z) ∈ O({σ : α < σ < β}).
(ii) Assume lim

|t|→∞
f (z) converges uniformly in every strip

α + δ ≤ |σ| ≤ β − δ, where δ > 0.

Then for a real positive x define

g(x) :=
1

2πi

∫ σ+i∞

σ−i∞
x−z f (z)dz

and

f (z) =

∫ ∞
0

xz−1g(x)dx .
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Lemma

For a solution y(x) of (2.1),the Mellin transformation of y(x)
reads ∫ ∞

0
y(x)xz−1dx =

1

n

Γ(z)Γ( 1−pz
n )

Γ( 1+qz
n + 1)

.
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Example

For n = 2, p = 1,∫ ∞
0

(
−x +

√
x2 + 4

2

)
xz−1dx =

1

2

Γ(z)Γ( 1−z
2 )

Γ( 1+z
2 + 1)

.
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Example

For n = 3, p = 1,

∫ ∞
0

 3

√
1

2
+

√
1

4
+
(x

3

)3
+

3

√
1

2
−
√

1

4
+
(x

3

)3

 xz−1dx

=
1

3

Γ(z)Γ( 1−z
3 )

Γ( 1+2z
3 + 1)

.
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By Mellin inversion theorem,

Proposition

The Mellin inversion formula gives a special solution of
ϕ(x , y) = yn + xyp − 1 = 0.

y(x) =
1

2πi

∫ c+i∞

c−i∞

1

n

Γ(z)Γ( 1−pz
n )

Γ( 1+qz
n + 1)

x−zdz , 0 < c <
1

p
. (2.2)
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Proof.

Apply Stirling’s formula for the gamma function to the above
integrand for x = |x |e−iθ.

Γ(z)Γ( 1−pz
n )

Γ( 1+qz
n + 1)

x−z ∼
√

2πe−|t|
πp
n e−θt .

The above integral (2.2) converges in the angular domain

−πp
n
≤ θ ≤ πp

n

as |t| → ∞, where z = s + it ∈ C. Hence satisfies the conditions
in theorem (2.1).
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Algebraic functions in terms of hypergeometric series



Algebraic functions, The Newton-Puiseux algorithm Trinomial algebraic function Algebraic functions in terms of hypergeometric series

Consider

y(x) =
1

2πi

∫ c+i∞

c−i∞

1

n

Γ(z)Γ( 1−pz
n )

Γ( 1+qz
n + 1)

x−zdz ,

Now take residues at z = −k , where k ∈ Z≥0 of the above integral.

Figure 2.1: Barnes Contour
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Eventually, we obtain

Y0(X ) =
1

n

∞∑
k=0

Γ( 1+pk
n )(−1)

pk+1
n

+k

Γ( 1−qk
n + 1)k!

(X
1
n )Nk+r (2.3)

Also, put

Yt(X ) := Y0(εtX
1
n ),

where N = n − qr < 0 and εt = e
2πit
n , for t = 0, 1, · · · , n − 1.
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Example

Let us try to find a solution of the algebraic equation
ϕ(x , y) = y3 + xy − 1 = 0, by using Mellin Inversion formula

y(x) =
1

3

1

2πi

∫ c+i∞

c−i∞

Γ(z)Γ( 1−z
3 )

Γ( 4+2z
3 )

x−zdz .

By using the relation Γ(z + 3) = (z + 2)(z + 1)zΓ(z) we obtain[
x3(

1− 2ϑx
3

)(
−2− 2ϑx

3
)(

1 + ϑx
3

) + ϑx(ϑx − 2)(ϑx − 1)

]
y(x) = 0.

(2.4)
ϑx = x d

dx .
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Applying the change of variables x3 = t and then −22

33 t = s
eventually yields the hypergeometric differential equation[
−s(ϑs −

1

6
)(ϑs +

1

3
)2 + (ϑs)(ϑs −

2

3
)(ϑs −

1

3
)

]
ψ(s) = 0 (2.5)

where y((−33

22 s)
1
3 ) = ψ(s). In fact ψ(s) is a Pochhammer

hypergeometric function of the form

ψ(s) = 3F2(−1

6
,

1

3
,

1

3
,−2

3
,−1

3
; s) =

∞∑
k=0

(−1
6 )k( 1

3 )2
k

(−2
3 )k(−1

3 )kk!
sk .
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y(x) =
∞∑
k=0

(−1
6 )k( 1

3 )2
k

(−2
3 )k(−1

3 )kk!

(
−22

33
x3

)k

= 3F2(−1

6
,

1

3
,

1

3
;−2

3
,−1

3
|
(
−22

33
x3

)
)

=
∞∑
k=0

(−1
6 )k( 1

3 )k(−2
3 + k)

(−1
3 )k(−2

3 )k!

(
−22

33
x3

)k

.
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The equation (2.5) has a non-algebraic solution near 1
s = 0.(

1

s
1
3

)
log

(
1

s

)
+ o

(
1

s
1
3

)
.
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Proposition

In general, for a given algebraic equation of the form
ϕ(x , y) = yn + xyp − 1 = 0, the general hypergeometric
differential equation satisfied by y(x) can be given by

n−1∏
l=0

(ϑx − l)− (−p)pqq

nn
xn

p−1∏
j=0

(ϑx +
1 + nj

p
)

q−1∏
k=0

(ϑx +
−1 + nk

q
)

 y(x) = 0

and after the change of variables s = (−p)pqq

nn xn, and ϑx = nϑs one
getsn−1∏

l=0

(ϑs −
l

n
)− s

p−1∏
j=0

(ϑs +
1

np
+

j

p
)

q−1∏
k=0

(ϑs −
1

nq
+

k

q
)

Y (s) = 0.
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Thus,

Y (s) = nFn−1

(−→α ;
−→
β |s
)

(2.6)

where s = (−p)pqq

nn xn and Y (s) = y(s
1
n ).

−→α =

(
1

np
,

1

np
+

1

p
. . . ,

1

np
+

p − 1

p
,− 1

nq
,− 1

nq
+

1

q
, . . . ,− 1

nq
+

q − 1

q

)
−→
β =

(
−1

n
, . . . ,−n − 1

n

)
.
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Algebraic functions in terms of hypergeometric series

Newton polygon of

ϕ(x , y) = yn + xyp − 1 = 0 : (3.1)

(1, p)

(0, n)

(0, 0)

is not appropriate for the Newton’s algorithm.
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Consider a general trinomial algebraic equation of the following
form:

f (X ,Y ) = Y n − XY p + X r = 0,

with (n − p) > p
r−1 and gcd(p, r − 1) = 1.

Let us try to express the solutions of the above general trinomial
algebraic equation f (X ,Y ) in terms of hypergeometric series.
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One can convert the equation ϕ(x , y) = 0 into the equation
f (X ,Y ) = 0 by the aid of the following new variables

Y (X ) = (−1)
1
nX

r
n y(x) (3.2)

and
x = (−1)

p
nX

n−qr
n (3.3)
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Algebraic functions in terms of hypergeometric series



Algebraic functions, The Newton-Puiseux algorithm Trinomial algebraic function Algebraic functions in terms of hypergeometric series

Recall

[
n−1∏
l=0

(ϑx−l)−
(−p)pqq

nn
xn

p−1∏
j=0

(ϑx+
1 + nj

p
)

q−1∏
k=0

(ϑx+
−1 + nk

q
)]y(x) = 0.

By using (3.2) and (3.3) one obtains

[
nn

ppqq
X−N

n−1∏
l=0

(
n

N
ϑX − l)

−
p−1∏
j=0

(
n

N
ϑX +

1 + nj

p
)

q−1∏
k=0

(
n

N
ϑX +

−1 + nk

q
)]y((−1)

p
nX

N
n ) = 0

(3.4)

where N = n − qr < 0, and q = n − p.
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In making use of the change of variable nn

ppqqX
−N = s, hence

ϑX = −Nϑs , one getss n−1∏
l=0

(ϑs +
l

n
)−

p−1∏
j=0

(ϑs −
1

np
− j

p
)

q−1∏
k=0

(ϑs +
1

nq
− k

q
)

ψ(s) = 0.

(3.5)
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Proposition

In general, solutions of the algebraic equation

f (X ,Y ) = Y n − XY p + X r = 0, (3.6)

with (n − p) > p
r−1 and gcd(p, r − 1) = 1, are of the form

Ỹt(X ) = Ỹ (εtX
1
p ) εt = e

2πit
p for t = 0, 1, . . . , p − 1.

and

− ˜̃Ys(X ) = ˜̃Y (ωsX
1
q ) ωs = e

2πis
q for s = 0, 1, . . . , q − 1.

where, Ỹt and ˜̃Ys are the solutions of the hypergeometric
differential equation (3.5), derived from the Mellin inversion
formula.
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Remark

Remark on (3.4),

(i) If gcd(n, p) = d > 1, then solutions to the differential
equation (3.4) are all algebraic functions with associated
equation yn + xyp − 1 = 0.

(ii) If d = 1 and p < n − 1, then there exists 1-dimensional
logarithmic solution space of (3.4) over C, spanned by∑n−1

k=0 Yk log(Yk), where f (X ,Yt(X )) = 0 (3.6) for
t = 0, 1, · · · , n − 1.

(iii) If d = 1 and p = n − 1, then the set {Y0, . . . ,Yn−2,X} gives
n−dimensional solution space over C to the differential
equation (3.4).
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If p < n − 1,
p−1∑
t=0

Ỹt(X )−
q−1∑
s=0

˜̃Ys(X ) = 0

These algebraic solutions span a (n − 1)−dimensional solution
subspace to (3.4) over C.
If p = n − 1, then

p−1∑
t=0

Ỹt(X )−
q−1∑
s=0

˜̃Ys(X ) = X .
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Example

Example

Assume that we are given the algebraic equation

f (X ,Y ) = Y 3 − XY + X 4 = 0.

For a solution y(x) of the algebraic equation
ϕ(x , y) = y3 + xy − 1 = 0, let

y0(x) =
1

3

1

2πi

∫ c+i∞

c−i∞

Γ(z)Γ( 1−z
3 )

Γ( 4+2z
3 )

x−zdz ,
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Also, employ Euler’s reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
,

Claim: There exists a periodic function φ(z) such that

Γ( 1−z
3 )

Γ( 4+2z
3 )

φ(z) =
Γ(−1−2z

3 )

Γ( 2+z
3 )

(−1)−z ,

with φ(z + 3) = φ(z).

Mutlu KOÇAR
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Hence, one can obtain

ỹ0(x) =
1

3

1

2πi

∫ c+i∞

c−i∞

Γ(z)Γ(−1−2z
3 )

Γ( 2+z
3 )

(−x)−zdz

which is also a solution to the hypergeometric differential equation
(2.4)[
x3(

1− 2ϑx
3

)(
−2− 2ϑx

3
)(

1 + ϑx
3

) + ϑx(ϑx − 2)(ϑx − 1)

]
y(x) = 0
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Calculating the residue yields the following series

y0(x) = −1

3

∞∑
k=0

Res
z=3k+1

Γ(z)Γ( 1−z
3 )

Γ( 4+2z
3 )

x−z

=
∞∑
k=0

Γ(3k + 1)(−1)k

Γ(2k + 2)k!
x−3k−1. (3.7)

Since

Res
z=3k+1

Γ(
1− z

3
)dz = Res

s=−k
Γ(s)(−3)ds

Mutlu KOÇAR
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Also

ỹ0(x) = −1

3

∞∑
k=0

Res
z= 3k−1

2

Γ(z)Γ(−1−2z
3 )

Γ( 2+z
3 )

(−x)−z

=
1

2

∞∑
k=0

Γ( 3k−1
2 )(−1)k

Γ(k+1
2 )k!

(−x)
1−3k

2 . (3.8)

Since

Res
z= 3k−1

2

Γ(
−1− 2z

3
)dz = Res

s=−k
Γ(s)

(
−3

2

)
ds
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Now, using

Y (X ) = (−1)
1
3X

4
3 y(x) (3.9)

and
x = (−1)

1
3X−

5
3 (3.10)

in y0(x) and ỹ0(x), we obtain

Ỹ0(X ) = (−1)
1
3X

4
3

∞∑
k=0

Γ(3k + 1)(−1)k

Γ(2k + 2)k!
((−1)

1
3X−

5
3 )−3k−1

=
∞∑
k=0

Γ(3k + 1)

Γ(2k + 2)k!
X 5k+3 (3.11)
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and

˜̃Y0(X ) = (−1)
1
3X

4
3

1

2

∞∑
k=0

Γ( 3k−1
2 )(−1)k

Γ(k+1
2 )k!

(−(−1)
1
3X−

5
3 )

1−3k
2

=
1

2

∞∑
k=0

Γ( 3k−1
2 )(−1)1−k

Γ(k+1
2 )k!

X
5k+1

2 (3.12)

,

˜̃Y1(X ) =
1

2

∞∑
k=0

Γ( 3k−1
2 )(−1)1−k

Γ(k+1
2 )k!

(eπiX
1
2 )5k+1

=
1

2

∞∑
k=0

Γ( 3k−1
2 )

Γ(k+1
2 )k!

X
5k+1

2 (3.13)

.
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On the other hand, we apply Newton’s algorithm to the algebraic
equation

f (X ,Y ) = Y 3 − XY + X 4 = 0.
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Newton polygon of f (X ,Y ):

(0, 3)

(1, 1)

(4, 0)

`1

`2
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On the line `1:
µ0 = 1

2 , so we start with putting Y0 = c0X
1
2 into the equation

f̃ (X ,Y ) = Y 3 − XY = 0, and get

c3
0X

3
2 − c0X

3
2 = c0(c2

0 − 1)X
3
2 = 0,

which implies c0 = ±1. Choose the branch c0 = 1, then Y0 = X
1
2 .

We let X
1
2 = X1, and compute the second approximation

f (X 2
1 ,X1(1 + Y1)) = X 3

1 (1 + Y1)3 − X 3
1 (1 + Y1) + X 8

1

= X 3
1 f1(X1,Y1)

where
f1(X1,Y1) = Y 3

1 + 3Y 2
1 + 2Y1 + X 5

1
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Newton polygon of f1(X1,Y1):

(0, 1)

(5, 0)

2Y1 + X 5
1 = 0 ⇒ Y1 = −X 5

1

2
, c1 = −1

2
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For the third approximation put f1(X1,X
5
1 (−1

2 + Y2))

f1(X1,X
5
1

(
−1

2
+ Y2

)
) = X 5

1 f2(X1,Y2)

where

f2(X1,Y2) = X 10
1

(
−1

2
+ Y2

)3

+ 3X 5
1

(
−1

2
+ Y2

)2

+ 2Y2.
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Newton polygon of f2:

(0, 1)

(5, 0)

2Y2 +
3

4
X 5

1 = 0 ⇒ Y2 = −3

8
X 5

1 , c2 = −3

8
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Lastly, we apply the algorithm one step further that is, we put

f2(X1,X
5
1 (−3

8
+ Y3)) = X 10

1 [2Y3 − 3X 5
1 (−3

8
+ Y3) + higher order terms]

= X 10
1 f3(X1,Y3)

where

f3(X1,Y3) = 2Y3 +
9

8
X 5

1 −
1

8
X 5

1 + higher order terms

similarly

2Y3 + X 5
1 = 0 ⇒ Y3 = −1

2
X 5

1 , c3 = −1

2
.
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We obtain a sequence of approxiamte solutions as

Y (X ) = X1(1 + X 5
1 (−1

2
+ X 5

1 (−3

8
+−1

2
X 5

1 + · · · )))

= X
1
2 − 1

2
X 3 − 3

8
X

11
2 − 1

2
X 8 + · · ·
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˜̃Y
(1)
psx (X ) = X

1
2 − 1

2
X 3 − 3

8
X

11
2 − 1

2
X 8 + · · ·

There is another branch on the line `1. Namely, µ0 = 1
2 and

c0 = −1.

˜̃Y
(0)
psx (X ) = −X

1
2 − 1

2
X 3 +

3

8
X

11
2 − 1

2
X 8 + · · ·

For the third branch we look at the line `2(µ0 = 3, c0 = 1).

Ỹ
(0)
psx (X ) = X 3 + X 8 + 3X 13 + 12X 18 + · · ·

Mutlu KOÇAR

Algebraic functions in terms of hypergeometric series



Algebraic functions, The Newton-Puiseux algorithm Trinomial algebraic function Algebraic functions in terms of hypergeometric series

− ˜̃Y1(X ) = −1

2

∞∑
k=0

Γ( 3k−1
2 )

Γ(k+1
2 )k!

X
5k+1

2 = X
1
2 − 1

2
X 3 − 3

8
X

11
2 − 1

2
X 8 + · · ·

= ˜̃Y
(1)
psx (X ),

− ˜̃Y0(X ) = −1

2

∞∑
k=0

Γ( 3k−1
2 )(−1)1−k

Γ(k+1
2 )k!

X
5k+1

2 = −X
1
2 − 1

2
X 3 +

3

8
X

11
2

− 1

2
X 8 + · · ·

= ˜̃Y
(0)
psx (X ),

and

Ỹ0(X ) =
∞∑
k=0

Γ(3k + 1)

Γ(2k + 2)k!
X 5k+3 = X 3+X 8+3X 13+· · · = Ỹ

(0)
psx (X ).
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Finally, the hypergeometric differential equation satisfied by for
every algebraic function satisfying

f (X ,Y ) = Y 3 − XY + X 4 = 0

is[
33

22
X 5ϑX (ϑX +

5

3
)(ϑX +

10

3
)− (ϑX −

5

3
)(ϑX +

5

6
)(ϑX −

5

3
)

]
Ỹ0(X ) = 0.

[
33

22
X 5ϑX (ϑX +

5

3
)(ϑX +

10

3
)− (ϑX −

5

3
)(ϑX +

5

6
)(ϑX −

5

3
)

]
˜̃Yj(X ) = 0

for 0 ≤ j ≤ 1.
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We see that

˜̃Y
(0)
psx (X ) + ˜̃Y

(1)
psx (X ) + Ỹ

(0)
psx (X ) = 0.

˜̃Y
(0)
psx (X ), ˜̃Y

(1)
psx , Ỹ

(0)
psx (X ) span a 2−dimensional subspace to the

above hypergeometric differential equation. There exists a
non-algebraic solution to the above differential equation namely,

X
5
3 logX + o(X

5
3 ).
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Conclusion

In general when n, p, r are large positive integers, finding the
solutions of a given algebraic equation of the form

f (X ,Y ) = Y n − XY p + X r = 0 with (n − p) >
p

r − 1

by means of Newton’s algorithm requires much more complicated
calculations because of the higher order terms which occur at each

approximation step. The hypergeometric series Ỹt and ˜̃Ys do not
require such tough computations. Also, infinitely many coefficients
and powers of X are known.
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Plusieurs Variable et Résolution Analytique des Équations
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