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Algebraic functions, The Newton-Puiseux algorithm

Algebraic functions and the Newton-Puiseux algorithm

A function y(x) is said to be an algebraic function if it satisfies
f(x,y(x)) =0, where f(x,y) € C[x, y] is a polynomial in x and y.

Example

f(x,y) = xP — y9 = 0 has the solution y = xa. In fact, "q
independent solutions to the algebraic equation
f(x,y) = xP —y9 =0, are given by

yi(x) = emikxa  for k= 0,...,q— 1.

where we assume p and g are coprime.
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Algebraic functions, The Newton-Puiseux algorithm

Let f(x,y) = ansx®y” be a convergent power series and
without loss of generality, assume that f is y-general (say of order
m>0,i.e agm # 0 and ag; = 0 for i < m). Define the carrier of
f as

A(f) := {(a, B) € N?| a,p # 0}.
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Algebraic functions, The Newton-Puiseux algorithm

We now want to find the line which we begin the process. It is the
steepest possible line through the lowest point of the carrier on the
[B-axis.

For each point p of the carrier of f we consider the positive
quadrant p + (R*)2 moved up to p. From the union of all these
displaced with quadrants we construct the convex hull

conv(Upea(r)(p + (R")?))

The boundary consists of a compact polygonal path (where all the
segments have negative slope) and two half lines. This compact
polygonal path is called the Newton polygon of f.
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Algebraic functions, The Newton-Puiseux algorithm

Consider f(x, y) given by

Foay) = aapx®y?+ D auax®y? = F(x,y)+hix, y)
a+pof=v a+poB>v

Such an f(x, y) has the following Newton polygon:
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B
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~

The line(dotted) equation is : a + upf = v.
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Algebraic functions, The Newton-Puiseux algorithm

v is the intercept on the a-axis of the line through (0, m) with

1
slope e

For the first approximate solution, put y = cx*° in f(x,y) =0.

f(x, cxH0) = Z aapx P xtoP
a+ppfB=v

=x" Z aasc” = x"g(c) =0
a+pofB=v

where g is a polynomial of degree m.
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Algebraic functions, The Newton-Puiseux algorithm

As an3 # 0, g(c) has a non-zero root cp.
Thus, yo = cpx*° is a solution to the equation f(x,y) = 0.

Since pp € Qso, po = % with ged(po, qo) = 1.

1
Set x; := x% and to improve the approximate solution put
_ PO :
y = x1°(co + y1) in throughout f(x, y).
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This gives us a new power series f(x°, x°(co + y1)).
x{ ™ divides this power series by (1.1)

F(x{°, x{°(co + y1)) = x{ P f(x1, y1).

fi(x1,y1) : yi—general of order my < m.
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Algebraic functions, The Newton-Puiseux algorithm

Again, construct the Newton polygon of f;. Let —i be its
steepest negative slope, then p; = % and obtain an approximate
solution y = ¢1x*1 such that gi(c1) = 0.

1

Set xp 1= Xle. and improve the solution by putting
y1 = x5 (¢1 + y2) throughout fi(x1,y1) = 0.
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Thus,
(gt x5t (e + y2)) = x5 T fa(x2, y2)

> . yo—general of order my < mjy.
Continuing this process eventually yields a sequence of
approximate solutions

y =x"(co+ x1"(c1 + x5 (ca+ - +)))
= coxM° + crxOx + coxHOx|T x4 + - -

The process breaks off when the Newton polygon of f; is a single
point for some j.
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Trinomial algebraic function

Consider a general trinomial equation given by

o(x,y)=y"+xyP=1=0, (n>p). (2.1)

Remark
The singular points(discriminant) of the equation (2.1) are given by

n

x"=(-1)" (g=n—p).

quQ’

If y(x) is a solution of (2.1), then
ye(x) = exy((ex)Px)

2mik
is also a solution to ¢(x,y) = y"+ xyP —1 =0, where ¢, = e n

fork=0,1,...n—1.
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Trinomial algebraic function
Theorem

(Mellin Inversion Theorem) Let z = o + it € C.
(i) Suppose f(z) € O({o : a < o < B}).
(ii) Assume lim f(z) converges uniformly in every strip
o0

a+d<|o| < B -9, where § > 0.

Then for a real positive x define
1 o+ico

g(x) = 5 x*f(z)dz

o—ioco

f(z) = /000 x* g (x)dx.
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Trinomial algebraic function

For a solution y(x) of (2.1),the Mellin transformation of y(x)
reads

% L X_U(Z)F(l;n"z)
/0 y(x)x*"dx =

n(EE 4 1)
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Forn=2,p=1,

/OO —x+Vx2+4\ , 4
- | x dx = —
0

2 2T +1)
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Trinomial algebraic function

Forn=3,p=1,
/ 3
]_ r(Z 1T

3 r(lJ%22 + 1)'
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By Mellin inversion theorem,

Proposition
The Mellin inversion formula gives a special solution of
e(x,y)=y"+xyP —-1=0.

1 [etioo 1 [(2)r(2=e2) 1
x) = — S 0 Iz, O<c< . (22
}/( ) 2i /cioo nr(l'i‘%_f_l) p ( )
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Proof |

Apply Stirling's formula for the gamma function to the above
integrand for x = |x|e~"?,
1—

M2)r(==)

— 0 TxTF ~ V 27T€7|t|ﬂ7peiat.
M= +1)

The above integral (2.2) converges in the angular domain

TP g TP
n n

as |t| — oo, where z = s + it € C. Hence satisfies the conditions
in theorem (2.1). O

Mutlu KOCAR
Algebraic functions in terms of hypergeometric series
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Consider
1 feticopr(z)r(i=ez)
y(x) = 2/ e, X4z
Ti Jemico NT(FE 4+ 1)
Now take residues at z = —k, where k € Z>( of the above integral.

Figure 2.1: Barnes Contour
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Trinomial algebraic function

Eventually, we obtain

pk+1 k

L i [ GV
00 =7 2 (=% 4+ 1)k

(Xn)Mer(23)

k=0
Also, put
1
Yi(X) := Yo(e'X7),
whereN—n—qr<Oande—en fort=0,1,- n—1.
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Trinomial algebraic function
Example

Let us try to find a solution of the algebraic equation
o(x,y) = y3 +xy — 1 =0, by using Mellin Inversion formula

1 1 [otioo r(z)r(l%)

x~Zdz.
3210 Jeino  T(HE) ‘

y(x) =

By using the relation ['(z + 3) = (z + 2)(z + 1)zl(z) we obtain

1—-29,,, —2—-29, 1+,
T2 00~ 20, - 1) ) 0.

(2.4)
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Trinomial algebraic function

Applying the change of variables x3 = t and then —%—it =s
eventually yields the hypergeometric differential equation

=500 = )0+ 37+ ()00 - 20— D] vl0) =0 (25)

where y((— 225) ) = 4(s). In fact ¢¥(s) is a Pochhammer
hypergeometric function of the form

¢(5) = 3F2 S
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The equation (2.5) has a non-algebraic solution near 1 = 0.

n-0)
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Proposition

In general, for a given algebraic equation of the form
o(x,y) = y"+ xyP — 1 =0, the general hypergeometric
differential equation satisfied by y(x) can be given by

n—1 p—1 . g—1
(=p)Pq? 14 nj —1+ nk
19X —)—>———x" X X — :
1« ) X H(ﬂ +— ) [T« + . )| y(x)
/=0 j=0 k=0
and after the change of variables s = (_,2)’7qu x", and 9, = nYs one
gets
gl 1k
19—7 )—s +—+ Js — — + =) Y(s)=0.
Il H HIlo -2+ 9| ve
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Trinomial algebraic function

Thus,
Y(s) = nFo (@ s) (2:6)

where s = H;ﬂx” and Y(s) = y(s%).

1 1 1 1 p-1 1 1 1 1 g-1
+ o, —+ , , + =+ =
np - p ' ng’ nqg q ng  q

d=(— =
np’np  p
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Newton polygon of

ex,y)=y"+xy-1=0: (3.1)
(0,n)

(1,p)
(0,0)
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Consider a general trinomial algebraic equation of the following

form:
(X, Y)=Y"=-XYP+ X" =0,

with (n—p) > 25 and ged(p,r — 1) = 1.

Let us try to express the solutions of the above general trinomial
algebraic equation (X, Y) in terms of hypergeometric series.
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One can convert the equation ¢(x,y) = 0 into the equation
f(X,Y) =0 by the aid of the following new variables

Y(X) = (~1)7 Xy (x) (32)
and
x=(-1)a X" (3.3)
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Recall
n—1 p—1 g—1

n —1+ nk
[]@—n- ol H H(i%LT)]y(X) =0.
1=0 Jj= k=0

By using (3.2) and (3.3) one obtains

n n—1
n _ n
[5—oX NH(Nﬁx—/)
1=0

pPqgd

e 1+ nj I 1+ nk N
B b —Ox + ——)y((-1)a X ) =
TGy = 55 T Gyoe = = bEnExE) —o

where N=n—qr <0,and g =n—p.
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In making use of the change of variable -2-- X~N = s, hence

pPq9
Ux = —Nvs, one gets
n—1 p—1 . g-1
/ 1 J 1 k
S Js + —) — P — — — = Ys + — — — s)=0.
[0 ) TT0s = = DT+ g = )

(3.5)
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In general, solutions of the algebraic equation
f(X,Y)=Y"-XYP+ X" =0, (3.6)

with (n — p) > -5 and gcd(p,r — 1) = 1, are of the form

2mit

Vi(X) = V(eEX?) et=e» for t=0,1,...,p— 1.

and

2mis

V(X)) = V(X)) S =ed

for s=0,1,...,q—1.

where, Y; and Y are the solutions of the hypergeometric
differential equation (3.5), derived from the Mellin inversion
formula.
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Remark on (3.4),

(i) If gcd(n,p) = d > 1, then solutions to the differential
equation (3.4) are all algebraic functions with associated
equation y" 4+ xyP — 1 = 0.

(if) Ifd =1 and p < n— 1, then there exists 1-dimensional
logarithmic solution space of (3.4) over C, spanned by
S0=% Yilog(Yk), where f(X, Y(X)) = 0 (3.6) for
t=0,1,---,n—1.

(i) If d =1 and p = n— 1, then the set {Yy, ..., Yo_2, X} gives
n—dimensional solution space over C to the differential
equation (3.4).
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Ifp<n-—1,

?

[ay
.?
[ay

133

Nt(X)_ s(X) =0

S

Il

<)
I
o

t

These algebraic solutions span a (n — 1)—dimensional solution
subspace to (3.4) over C.
If p=n—1, then

,...
Il
o
")
Il
o
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Example

Assume that we are given the algebraic equation

fFX,Y)=Y3—XY +X*=0.

For a solution y(x) of the algebraic equation
o, y) =y +xy —1=0, let

11 [ r(z)M(35E)

U 32w Jeino  T(HEE)

yo(x) x?dz,
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Also, employ Euler’s reflection formula

s

rz)r(l-2z)= W?

Claim: There exists a periodic function ¢(z) such that

r(l=z [(=l-2z
((j ))qs( ) = ((Hz))(—l)z,

with ¢(z 4 3) = ¢(z).

Mutlu KOCAR
Algebraic functions in terms of hypergeometric series



Algebraic functions in terms of hypergeometric sei

Hence, one can obtain

11 c+ioco r(z) ( )

N 3 )2y
327i c—ico r(—) (=x)""dz

Yo(x) =

which is also a solution to the hypergeometric differential equation
(2.4)

1—-209,,,—2—20,,, 14+
2R b0 - 20— D] ) = 0
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Calculating the residue yields the following series

1 r(2)r(%)
== Res — 2~ 3 7y=Z
yo(x) 3 ! 2= 3k+1 r(erz)
2 T3k + 1)( 1)
E . (3.7)
2T (2k + 2)K]
Since
JRes )dz = Slze;sk M(s)(—3)ds
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Also
i 1 rr(=*), .~
Yo(x) = —3 - (—x)~*
3 ;) r52)
1 F(—3"2‘1)(—1)" 1-3k
Sy R g (38)
2i= Tk
Since _ 3
-1-2z
Z:R3ekTs_1 I’(i3 )dz = Slze_sk r(s) <—2> ds
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Now, using
1 4
Y(X) = (-1):X5y(x) (3.9)
and L.
x=(-1)3X"3 (3.10)
in yo(x) and yp(x), we obtain

o

. Vixs F(3k + 1)(—1) 1,5 3
Yo(X) = (-1)3X5 ) F(2k+2)k|) ((ryaxy =
k=0
= T(3k+1) (5k+3
3.11
Zr(2/<+2 kI (3.11)

k=0
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and
& R r(b)(—l)k 1 5. 1-3k
Vo(x) = (-1ix$ 2 3 T2 T gyix-d)
2i5 TCESHK
1 F(L“l)(—l)l—k 5k+1
:52 rzklkl X2 (3.12)
k=0 (*2°)
z 1S4 (k) (—1)1- 16kl
1(X):7Z 2k (emXE) +
2 Tk
1 F(—3k2‘1) 5k+1
=-> 2 XTr (3.13)
k+1
2k:0 F(T)k!
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On the other hand, we apply Newton's algorithm to the algebraic
equation
fFIX,Y)=Y3—XY +X*=0.
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Newton polygon of (X, Y):

(0,3)
{1
(1,1)

(4.0)

~
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On the line /;: X
o = % so we start with putting Yp = ¢y X2 into the equation
f(X,Y)=Y3—XY =0, and get

C(:;’X% — CoX% = co(c3 — 1)X% =0,

which implies ¢g = 1. Choose the branch ¢y = 1, then Yy = Xz,
1
We let X2 = Xj, and compute the second approximation

FIXE, X1 (1+ Y1) = XP(1+ Y1)® = X2(1+ Y1) + XP
= XP A (X1, Y1)

where
A(X1, Y1) = Y2 +3YE+2Y1 + X7
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Newton polygon of f1(Xi, Y1):

(0,1)

\(5, 0)

7

X7 1
2Y1+X15:0 = Y]_:—717 C1:—§
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For the third approximation put fi(X1, X2 (—1 + Y2))

1
0. X3 (3 + 2 )) = X0, Yo
where

1 3 1 2
(X1, Yo) = X1° (—2 + Yg) +3X7 (—2 + Y2> +2Ys,.
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Newton polygon of f>:

(0,1)

\(5, 0)

7

3
4

3
XP=0 = Y2:—§X15, ©=-3
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Lastly, we apply the algorithm one step further that is, we put

fz(xl,xf(—g +¥3)) = X{°[2Y; — 3X15(—§ + Y3) + higher order ter

= X{%%(X1, Y3)
where

1

8X15 + higher order terms

9
(X1, Y3) =2Y5 + éxf -
similarly

1 1
2Y3+ X7 =0 = Ygz—ixf, cs=—3.
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We obtain a sequence of approxiamte solutions as

1 31
Y(X) =X (1+ xf’(—§ + xf’(—g + —§X15 +--4)))
_ x5 _1xs gx% S
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v 11 3, u 1
There is another branch on the line ¢1. Namely, o = 3 and
c=—1
Yégx)(X) — X2~ 5X3 + gx%l — 5)(8 +..-

For the third branch we look at the line ¢2(po =3, co = 1).

VAX) = X3+ X8 43X +12X18 4 ...
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= 1 r(:"ki_l) i . 1 3
_Yl(X)——* 2 :X§_7x3_7Xf 7X8
2 kz_(:) r(%)k' 2 8
S(1
= ISS)B(XL
% 1 ML (—1) K g L ;.
~Yo(X) =3 2 XL xd o Ix3 o 2xd
1
_ 7x8
5 +
S (0
= ISSQ(X)a
and
> T(3k+1 »
Z r(2k+ 2 k|X5k+3 = X3+X8+3X13+, ce = [.‘SS)?(X)
k=0
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Finally, the hypergeometric differential equation satisfied by for
every algebraic function satisfying

FX,Y)=Y3 - XY +X*=0

3 ~
X0+ D)0+ ) = 0 = o+ Do — 3] ¥alx) =

3 I~
X0+ $)0x + 5) — (0= D0x + Do - )| 00 = ¢
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We see that

YQx) + Y x) + ¥9(x) = 0.
%g?(x)a \:/;%27 Y/;Sg)z(X) span a 2—dimensional subspace to the
above hypergeometric differential equation. There exists a

non-algebraic solution to the above differential equation namely,

X5 log X + o(X3).
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Conclusion

In general when n, p, r are large positive integers, finding the
solutions of a given algebraic equation of the form

p
r—1

fX,Y)=Y"—=XYP+X"=0 with (n—p)>

by means of Newton's algorithm requires much more complicated
calculations because of the higher order terms which occur at each
approximation step. The hypergeometric series Y; and Y; do not
require such tough computations. Also, infinitely many coefficients
and powers of X are known.
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