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• the braid monodromy revisited

• the Zariski van Kampen theorem

• fundamental groups of discriminant complements
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braid group invariant
Definition of BrM , the braid monodromy group
Given a space X of simple monic polynomials px of degree k, then

BrMX = p∗π1(X),

where the map to the configuration space of C,

x 7→ p−1x (0) ∈ Σk(C)

induces the braid monodromy on fundamental groups

p∗ : π1X → Bk = π1Σk(C)

Remarks

• simple polynomials are those which have number of zeroes equal
to the degree (without multiplicities)

• local problem, i.e. X punctured disc, solvable by
Newton-Puiseux.

• global problem: how to fit local solutions together
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affine divisor complements

typical situation

• V affine space of polynomials,

• X ⊂ V Zariski-open subset of simple monic polynomials

• p−1(0) =: D ⊂ V × C a horizontal divisor, e.g. a discriminant

hyperplane arrangement situation
With respect to suitable distinguished variable z

p is the product of linear factors monic in z
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Theorem (Zariski, van Kampen)
Suppose p monic, braid monodromy group BrMX generated by
{β1, ..., βr} ⊂ Brk, then π1(V × C−D) is finitely presented as

〈t1, ..., tk| t−1i t
βj

i , i ≤ k, j ≤ r〉.

Hurwitz action:

t
σj

i =





ti+1 if j = i,
titi−1t

−1
i if j = i− 1,

ti else.
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van Kampen

Proof (Idea of)
The locally trivial fibration on X × C−D has a section.
The boundary map π2 → π1 in the long homotopy sequence is trivial.
The section provides a semi-direct product structure:

π1(X × C−D) ∼= π1(x0 × C− p−1x (0)) n π1(X)

where the second acts on the former by Hurwitz automorphisms.
This gives a presentation relying on π1(X) = 〈aj |R〉:

π1(X×C−D) ∼= 〈t1, ..., tk, a1, . . . , ar′ | a−1j t−1i ajt
p∗aj
i , i ≤ k, j ≤ r′,R〉.

surjects onto π1(V × C−D) with kernel normally generated by aj :

π1(V × C−D) ∼= 〈t1, ..., tk| t−1i t
p∗aj
i , i ≤ k, j ≤ r′〉.

and the claim follows by replacing the generators of BrMX .
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Remark
A careful choice of generators βj can reduce the number of relations.

Remark

• π1 is invariant under some modifications of BrMX

• replace generator σ2
1σ

2
3 by generators σ2

1 and σ2
3

• pretend that distinct singularities are in distinct fibres.
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discriminant knot group of some
Brieskorn-Pham singularities

new topic
discriminant complements of hypersurface singularities

object of study
A polynomial f on affine space Ck with an isolated singularity in 0.

Remark
Their discriminant complements may be Eilenberg-MacLane spaces of
their fundamental groups.

Remark
With some care, the argument can be used to get knot groups for
some A-discriminants.
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bifurcation complement

Unfolding spaces in singularity theory:

• Vf = f + C[x1, ..., xn]trunc, an unfolding space of

f = xd11 + xd22 + · · ·+ xdnn , (Brieskorn-Pham polynomial)

• uν , the coefficients of monomials gν =
∏
i x

νi
i are coordinates.

• get P ∈ C[uν ][z], monic in z, by eliminating xi from

F = f(x1, ..., xn)− z +
∑
uν
∏
xνii = ∂

∂xi
F = 0.

• Xf = {u ∈ Vf |Pu simple} the bifurcation complement.

• BrMXf
is an invariant of f .

Remark
Due to a genericity argument, unfolding over C[x1, ..., xn]deg≤2 is
sufficient.
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Over a generic line in unfolding space, we get a plane curve C, the
plane section of D, such that the restricted fibre bundle is given as
the complement of the vertical lines through singular points of C.
These are of two kinds (as opposed to the uniqueness of a Morse
singularity), the ordinary node and the ordinary cusp, corresponding
to the two distinct strata in D of codimension one.

{ q qq

Figure: plane section of discriminant

• suffices to understand BrM for unfolding by linear terms.
(technical: versal braid monodromy)
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Hefez Lazzeri base

We consider polynomials f(x, y) = x3 + y`+1.

The generic function is Morse in the unfolding of f by linear terms

F (x, y, a, b) := x3 − 3ax+ y`+1 − `+ 1

`
by,

f̃ = F (x, y, 1, 1) has critical values zi = 2 + yi, z`+i = −2 + yi, where
the yi are the ` solutions to y` = 1/` ordered by increasing argument.
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Hefez Lazzeri base

At parameters a = 1, b = 1 ,
f̃ = F (x, y, 1, 1) has critical values zi = 2 + yi, z`+i = −2 + yi, where
the yi are the ` solutions to y` = 1/` ordered by increasing argument.

The geometric basis {ti, 1 ≤ i ≤ 2`} for f̃ , can be understood from
the figure

f
ff

f f
p

pp
p p

f
ff

f f
p

pp
p p

Figure: Hefez Lazzeri system in case ` = 5
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hyperplane model

The discriminant has a formal factorisation:

August 17, 2010 15:18 WSPC/S0129-167X 133-IJM
S0129167X10006379

Braid Monodromy of Brieskorn–Pham Singularities 1057

A set of mapping classes which generate the braid monodromy in the punctured

fiber corresponding to the function x!+1 − (! + 1)rx, with punctures thus at the

!-th roots of !r!+1, is given by:

(1) the cusp-twists on the dashed arcs joining consecutive punctures,

(2) the full twists on arcs joining non-consecutive punctures in the complement

of the inscribed polygon and the open cone defined by the first and the last

puncture.

5. Vanishing Arcs in a Model Family

In this section we want to prepare the study of vanishing arcs of the discriminant

family associated to the one-parameter family fa. Following Hefez and Lazzeri we

have a formal factorization of the discriminant polynomial associated to the Hefez–

Lazzeri unfolding:

p(a, b, z) =

!∏

j=1

(
z − 2a

3
2 − ξj

(
b!+1

!

)1
!

) (
z + 2a

3
2 − ξj

(
b!+1

!

)1
!

)
, (5.1)

where ξ denotes a primitive !-th root of unity. We consider here the linear arrange-

ment in C3 modeled on this factorization defined by

q(v, w, z) = 0, where q(v, w, z) = ((z − v)! − w!)((z + v)! − w!),

as a fibration of punctured fibers over the base space with coordinates v, w. The

set of singular points consists of all intersection points of at least two hyperplanes

and maps onto the locus of critical parameters given by the zero locus of

v

!∏

i,j

(
w(ξi − ξj) − 2v

)
.

But our main interest is focused on the fiber bundle with punctured fibers over its

complement. Linearity is the essential feature to find trivializations along suitable

paths and to determine vanishing arcs. The following lemmas introduce some basic

notions in terms of the primitive 2!-th root of unity ζ = e
π

√−1
" of smallest argument,

ζ2 = ξ, and give some first geometric insights.

Lemma 5.1. Given a real constant η > 1 and a pair of complex numbers

vij = ζ2(j−1) − ζ2(i−1), zij = ζ2(j−1) + ζ2(i−1), 0 ≤ i − j < !,

then:

(1) the point (vij , 2, zij) is a singular point of the arrangement on the planes through

(4η, 2, 4η + 2ζ2(i−1)) and (4η, 2, −4η + 2ζ2(j−1)),

(2) there exists a path ωij with constant w = 2 from (4η, 2) to (vij , 2), which consists

of its circular part with constant radius and a change by π(− 1
2 + 1

! (i+ j−2)) of

the angular coordinate and its radial part, where the radial coordinate decreases

By non-linear change of coordinates → hyperplane arrangement
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v2 = 4a3 and (`w)` = b`+1
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Proposition
The braid monodromy of the line arrangement with constant η

((z − v)` − η)((z + v)` − η)

is generated by full twists σα on all arcs α such that

α = αi,j : 1 ≤ i− j < `

Proposition
The braid monodromy of the plane arrangement

((z − v)` − w`)((z + v)` − w`)

has in addition the full-twists on the first and the second set of `
punctures.

(up to modifications not affecting the fundamental group)
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Proposition
The braid monodromy of the discriminant for the family of functions

x3 − 3ax+ y`+1 − `+1
` y

is generated by

• full twists σ2
α on all arcs αi,j with 1 ≤ i− j < `

• cusp-twists σ3
α on all arcs αi,i with 1 ≤ i ≤ `.

p

p

p

p p
p p

p p
p p a

p
p p

p
pp

p

p
p
p `p

p

p
p

p p

p

p

p
p

p
p p

p
pp

p

p
p
p

To get the versal braid monodromy of the discriminant family, we therefore need
to transfer the locally assigned groups from local Milnor fibres of the discriminant
family to local Milnor fibres of the model discriminant family and transport them
along all possible standard paths.

We assign a group to a local Milnor fibre in the model discriminant using the
fact that the fibre is isomorphic to a local Milnor fibre in the discriminant family by
way of the two finite covering maps.

Lemma 6.82 The group assigned to a Milnor fibre at a regular parameter t1e#1,
su�ciently close to a singular parameter t0e#0 6= 0 with t1 � t0 > 0, is generated by
full twists on local v-arcs.

Proof: The singular fibre corresponds to a function with non-degenerate critical
points only, cf. the proof of the lemmas 5.10, 5.11. So by definition the locally as-
signed group is generated by mapping classes fixing all punctures and supported on
small discs each of which is a Milnor fibre for just one multiple puncture.

By close inspection we can see that the local v-arcs are supported on such discs
and the full twists on local v-arcs generate the group of all mapping classes of each
disc which preserve the punctures. 2

Lemma 6.83 The group assigned to a Milnor fibre at a regular parameter t1e#1,
su�ciently close to a singular parameter � = 0, is generated by full twists on local
w-arcs and 3

2 -twists on local v-arcs with index pair i1i2, i
+
1 i2.

Proof: The singular fibre corresponds to a function which has l2 critical points
of type Al1 with distinct critical values. So by definition the group locally assigned
to each disc, which is a local Milnor fibre of a multiple puncture, is generated by the
mapping classes of the braid monodromy of the singular function germ it corresponds
to.

Each of the critical points of type Al1 is unfolded linearly, so the local Milnor
fibre can be naturally identified with the Milnor fibre encountered in lemma 4.7.

94
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Fast forward of the remaining steps of the proof

• The versal braid monodromy of the second family.

• A suitable choice of generators for the braid monodromy group.
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Theorem
BrMXf

of the polynomial x3 + y`+1 is generated by:

• σ2
ij in case i · ·j

• σ3
ij in case i ·—·j ,

• σ±2ij σ2
ikσ
∓2
ij in case i

p pp
j

k (± = εijk antisymmetric).

�
�
�

�
�
�

s s
ss

s
s

s
s

1 2 `

`+ 2 2``+ 1

3

`+ 3

Figure: Dynkin diagram of x3 + y`+1

σij are the so-called band generators of the braid group.
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fundamental groups

Theorem
For X̃ = {u ∈ Vf |P (u, 0) 6= 0}, the discriminant complement:

π1 ∼=
〈
ti, i ∈ I

∣∣∣∣∣∣∣

titj = tjti, for i · ·j
titjti = tjtitj , for i · —·j ,

tεi tjt
−ε
i tk = tkt

ε
i tjt
−ε
i , for i

p pp
j

k

〉
.

(εijk antisymmetric)



On the Topology
of Hyperplane
Arrangements

and some of their
Quotients

Michael Lönne

Combinatorial structure
The Dynkin diagram is naturally associated to the geometry of the
generic smooth fibre of f :
Vanishing cycles provide a basis for the middle homology and are in
bijection to the vertices, edges (in our case) are in bijection to
non-zero intersection
(in fact −1).

�
�
�

�
�
�

s s
ss

s
s

s
s

1 2 `

`+ 2 2``+ 1

3

`+ 3

Figure: Dynkin diagram of x3 + y`+1

A given geometric basis is naturally acted on by the braid group Br2`.
Elements in the braid monodromy group act trivially on the Dynkin
diagram, since by the theorem of van Kampen they act trivially on
the discriminant knot group.
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open questions

• Is the braid monodromy group the whole stabiliser group of the
Dynkin diagram?

• What results should be expected in the case of arbitrary
singularities?
Gabrielov has Dynkin diagrams with simple edges and triangles,
but neither edges of higher multiplicity nor larger cycles.

• How are the invariants related for adjacent singularities?
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final remark

with S.Tanabe investigate implications for braid monodromy and
fundamental group

• for quotient of base by cyclic group

• for quotient of fibre by cyclic group


