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1. Introduction

The Gauss hypergeometric series is defined by

F (a, b, c; x) =
∞∑
n=0

(a, n)(b, n)

(c , n)(1, n)
xn,

{x ∈ C | |x | < 1}
c ̸= 0,−1,−2, . . . ,
(a, n) = Γ (a+ n)/Γ (a).

It admits an Euler type integral

Γ (c)

Γ (a)Γ (c − a)

∫ ∞

1
tb−c(t − x)−b(t − 1)c−a dt

t − 1
,

(Re(c) > Re(a) > 0) and satisfies hypergeometric differential equation

F :

[
x(1−x)(

d

dx
)2+{c−(a+b+1)x}( d

dx
)−ab

]
f (x) = 0. (HGDE)
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F satisfies followings:

(1) F has regular singular points at x = 0, 1,∞, i.e.,
for ∀x ∈ X = C− {0, 1}, ∃U̇ : a nbd. of ẋ s.t. the space SolF (U̇) of
single valued hol. sol’s to F on U̇ is 2-dim.

(2) For generic parameters, F admits following sol’s around x = 0, 1,∞:

x = 0 x = 1 x = ∞
F01(x) F11(x) ( 1x )

aF∞1(x)
x1−cF02(x) (1− x)c−a−bF12(x) ( 1x )

bF∞2(x)

F01(x) = F (a, b, c; x),
F02(x) = F (a− c + 1, b − c + 1, 2− c ; x),
F11(x) = F (a, b, a+ b − c + 1; 1− x),
F12(x) = F (c − a, c − b, c − a− b + 1; 1− x),
F∞1(x) = F (a, a− c + 1, a− b + 1; 1x ),
F∞2(x) = F (b, b − c + 1, b − a+ 1; 1x ).
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Take a base point ẋ ∈ (0, 1) ⊂ X . For ∀ρ ∈ π1(X , ẋ), by corresponding a
map from f ∈ SolF (U̇) to the analytic continuation ρ∗(f ) of f along ρ, we
have a homomorphism

M : π1(X , ẋ) ∋ ρ 7→ [M(ρ) : f 7→ ρ∗(f )] ∈ GL(Sol(U̇)),

which is called the monodromy representation of F .

ρ0, ρ1 ∈ π1(X , ẋ) : loops turning once around x = 0, 1 positively, set
ρ∞ = (ρ0ρ1)

−1.

Mi (i = 0, 1,∞) : the representation matrix of M(ρi ) w.r.t. a basis of
SolF (U̇).

The Jordan normal form [Mi ] of Mi is called the local monodromy at
x = i . For generic a, b, c , we have

[M0]=

(
1 0
0 e(−c)

)
, [M1]=

(
1 0
0 e(c−a−b)

)
, [M∞]=

(
e(a) 0
0 e(b)

)
,

where e(a) = e2π
√
−1a.
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Definition 1.1

E1: an ordinary differential equation with regular singular points. If the
monodromy representation of E1 is determined by the local monodromy at
every singular point, then E1 is called rigid.

Fact 1.2 (cf. [IKSY])

HGDE F is rigid, if its monodromy representation is irreducible.

Fact 1.3 (cf. [BH])

The generalized hypergeometric equation pFp−1 in (HGDEp) is rigid, if its
monodromy representation is irreducible.
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Definition 1.4 (Haraoka)

Em: a regular holonomic system of differential equations in m variables,
SEm : the singular locus of Em. If the monodromy representation of Em is
determined by the local monodromy of every irreducible component of
SEm , then Em is called rigid.

Fact 1.5 ([HU],[HK])

Appell’s hypergeometric systems F1, F2, F3, F4 are rigid, if their
monodromy representations are irreducible.

These facts can be proved by determining circuit transformations by their
local monodromy and relations of generators of π1(Cm − SEm , ẋ).

On the other hand, there are Euler type integrals of solutions to pFp−1 or
Appell-Lauricella’s hypergeometric systems. We have twisted homology
groups associated with them, and intersection forms on them, which are
invariant under circuit transformations.
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In this talk, firstly we give M0, M1, M∞ for HGDE F . We implicitly use
the intersection form, which is regarded as indeterminant with an unknown
h. By expressing M1 as a reflection w.r.t.it, we solve an equation of h
given by the relation M0M1 = M−1

∞ and the local monodromy [M∞].
Though we can get the results without the intersection form, our way
improves the efficiency of the proof.

Secondly, we consider the monodromy representation of 3F2 or pFp−1 by
the same way.

Thirdly, we give the monodromy representation of Appell’s hypergeometric
system F4, or Lauricella’s hypergeometric system FC by this idea.

Finally, we introduce a hypergeometric system in 2 variables of rank 9
found by these considerations.
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2. Monodromy for F
Let consider the monodromy representation of F . Take a base point
ẋ ∈ (0, 1). Choose a basis of SolF (U̇) as(

p1 · F01(x)
p2 · x1−cF02(x)

)
where p1, p2 are non-zero constants, and c is assumed to be non-integral.

There are twisted cycles γu1 ,γ
u
2 s.t.

p1 · F01(x) =
∫
γ1

u(t, x)
dt

t − 1
, p2 · F02(x) =

∫
γ2

u(t, x)
dt

t − 1
,

u(t, x) = tb−c(t − x)−b(t − 1)c−a.

H: the intersection matrix w.r.t γu1 ,γ
u
2 , i.e.,

H =
(
I(γuj , (γuk )∨)

)
1≤j ,k≤2

,

where ( )∨ is an operator changing the signs of a, b, c .
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Lemma 1

(i) M0 is

(
1 0
0 e(−c)

)
w.r.t. to this basis for any p1, p2.

(ii) H is diagonal.

Proof. (i) It is clear by the definition of F01(x), F02(x).

(ii) For i = 0, 1,∞, Mi and H satisfy

MiH
tM∨

i = H. (1)

Set H = (hjk). (1) for i = 0 yields

M∨
0 =

(
1 0
0 e(c)

)
,

(
h11 h12e(c)

e(−c)h21 h22

)
=

(
h11 h12
h21 h22

)
.

For c satisfying e(c) ̸= 1, we have h12 = h21 = 0.
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Set H =

(
h1 0
0 h2

)
by unknowns h1, h2, (h1h2 ̸= 0).

Lemma 2

v ,w: eigenvectors of Mi of eigenvalues α, β. Then

αβ∨ ̸= 1 ⇒ vH tw∨ = 0.

Proof. Note that

vH tw∨ = v(MiH
tM∨

i )
tw∨ = (vMi )H

t(wMi )
∨ = αβ∨vH tw∨.

Thus (1− αβ∨)(vH tw∨) = 0 and (vH tw∨) = 0 by (1− αβ∨) ̸= 0.

We consider M1.
Since F11(x), (1− x)c−a−bF12(x) is a fundamental system of F around
x = 1, the eigenvalues of M1 are 1, e(c − a− b).
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Lemma 3

v = (v1, v2): an eigenvector of M1 of eigenvalue e(c − a− b). If
c − a− b /∈ Z, vH tv∨ ̸= 0 then

M1 = I2 − (1− e(c − a− b))H tv∨(vH tv∨)−1v . (2)

Moreover, if the monodromy representation is irreducible then v1v2 ̸= 0.

Proof. Set M ′
1 = I2 − (1− e(c − a− b))H tv∨(vH tv∨)−1v .

Since vM ′
1 = v−(1−e(c−a−b))(vH tv∨)(vH tv∨)−1v = e(c−a−b)v ,

v is an eigenvector of M ′
1 of eigenvalue e(c − a− b).

By Lemma 2, an eigenvector w of M1 of eigenvalue 1 is characterized by
wH tv∨ = 0.

On the other hand, for w satisfying wH tv∨ = 0, we have
wM ′

1 = w − (1− e(c − a− b))(wH tv∨)(vH tv∨)−1v = w . Thus w is an
eigenvector of M ′

1 of eigenvalue 1.
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Coincidence of eigenvalues and eigenspaces of M1 and M ′
1 implies

M1 = M ′
1.

Note that this expression of M1 is invariant under the non-zero scalar
multiple of v .

If v2 = 0 then we may take v = (1, 0) to express M1. By vH tv∨ = h1,
H tv∨(vH tv∨)−1v vanish except the (1, 1)-entry and M1 is diagonal.
Since M0 is diagonal too, the monodromy representation becomes
reducible. We can similarly show the case v1 = 0.

By choosing p1, p2, we can normalize v to (1, 1) with keeping M0

invariant. Since the expression of M1 in (2) is also invariant under
non-zero scalar multiple of H, we normalize H to diag(1, h).
Then M1 takes the following

M1 =

(
1 0
0 1

)
− 1− e(c − a− b)

1 + h

(
1 1
h h

)
.
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We can determine the unknown h by the eigenvalues of M∞.

Theorem 2.1

Suppose
a, b, c , a− c, b − c /∈ Z.

Then H in the expression (2) of M1 is 1 0

0 − (e(c)−e(a))(e(c)−e(b))
e(c)(e(a)−1)(e(b)−1)

 .

M1 is expressed as

M1 = I2 −

 e(c)(e(a)−1)(e(b)−1)
e(a+b+c)−e(a+b)

e(c)(e(a)−1)(e(b)−1)
e(a+b+c)−e(a+b)

(e(c)−e(a))(e(c)−e(b))
e(a+b+c)−e(a+b)

(e(c)−e(a))(e(c)−e(b))
e(a+b+c)−e(a+b)

 .
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Proof. By

M0M1 =

(
1 0
0 e(−c)

)
− 1− e(c − a− b)

1 + h

(
1 1

e(−c)h e(−c)h

)

tr(M0M1) = 1 + e(−c) +
(e(c − a− b)− 1)(1 + e(−c)h)

1 + h
.

Since the eigenvalues of M∞ are e(a), e(b), we have

tr(M0M1) =
(e(a+b+c)+e(c))h+e(a+b)+e(2c)

e(a+b+c)(1+h)
=

1

e(a)
+

1

e(b)
.

This is a linear equation of h, its solution is

h = −(e(c)− e(a))(e(c)− e(b))

e(c)(e(a)− 1)(e(b)− 1)
.

To get M1, substitute this value into (2).
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3. Monodromy for 3F2

The generalized hypergeometric series 3F2
(a1, a2, a3

b1, b2
; x
)
with parameters

a1, a2, a3, b1, b2 (b1, b2 ̸= 0,−1,−2, . . . ) is defined by

3F2

(
a1, a2, a3
b1, b2

; x

)
=

∞∑
n=0

(a1, n)(a2, n)(a3, n)

(b1, n)(b2, n)(1, n)
xn (|x | < 1).

It admits an Euler type integral, and satisfies generalized hypergeometric
equation

3F2 : (x
d

dx
+ a1)(x

d

dx
+ a2)(x

d

dx
+ a3)f (x) (HGDE3)

=
d

dx
(x

d

dx
+ b1 − 1)(x

d

dx
+ b2 − 1)f (x).
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3F2 is a third order ordinary differential equation with regular singular
points at x = 0, 1,∞.
Riemann’s scheme is the table of the characteristic exponents of 3F2 at
x = i (i = 0, 1,∞), which is

x = 0 x = 1 x = ∞
0 0 a1

1− b1 1 a2
1− b2 b1 + b2 − a1 − a2 − a3 a3

Table: Riemann’s scheme

There are a holomorphic solution and solutions with factors x1−bk

(k = 1, 2) around x = 0;
there are two linearly independent holomorphic solutions and a solution
with factor xb1+b2−a1−a2−a3 around x = 1.
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Take ẋ ∈ (0, 1) and its n.b.d U̇ of ẋ . We choose a basis of the space
Sol3F2(U̇) of solutions to 3F2 by non-zero scalar multiples of

3F2

(
a1, a2, a3
b1, b2

; x

)
and solutions with factors x1−bk (b1, b2, b1 − b2 /∈ Z).

The circuit transform M0 of (HGDE3) w.r.t this basis is

M0 =

 1
e(−b1)

e(−b2)

 .

We may assume that

M1 = I3 − (1− λ)H tv(vH tv)−1v (3)

where λ = e(b1 + b2 − a1 − a2 − a3), H =

 1
h1

h2

 is given by

unknowns h1, h2, v = (1, 1, 1), and vH tv is supposed to be non-zero.
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We can determine unknowns h1, h2 by Riemann’s scheme.

Theorem 3.1

Suppose that

ai , ai − ai ′ , bj , b1 − b2, ai − bj /∈ Z (i , i ′ = 1, 2, 3; j = 1, 2).

H is determined by

h1 = −(e(b2)− 1)(e(a1)− e(b1))(e(a2)− e(b1))(e(a3)− e(b1))

e(b1)(e(b2)− e(b1))(e(a1)− 1)(e(a2)− 1)(e(a3)− 1)
,

h2 = −(e(b1)− 1)(e(a1)− e(b2))(e(a2)− e(b2))(e(a3)− e(b2))

e(b2)(e(b1)− e(b2))(e(a1)− 1)(e(a2)− 1)(e(a3)− 1)
.

M1 is given by the substitution of these values into H of (3).
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Proof. G (h1, h2; t): the eigenpolynomial of M0M1. By M0M1 = M−1
∞

and Riemann’s scheme, the equation G (h1, h2; t) = 0 w.r.t. t should has
solutions t = e(−a1), e(−a2), e(−a3).

Thus we have equations

G (h1, h2, e(−a1)) = 0,

G (h1, h2, e(−a2)) = 0,

G (h1, h2, e(−a3)) = 0,

w.r.t h1, h2.

Since

det(M0M1) = det(M0) det(M1) = e(−b1 − b2)e(b1 + b2 − a1 − a2 − a3)

=e(−a1 − a2 − a3) = e(−a1)e(−a2)e(−a3),

the last equation is not independent of the first and second ones.

This system reduces to a system of linear equations, solve it.
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The generalized hypergeometric series pFp−1

(
a1, . . . , ap

b1, . . . , bp−1
; x

)
(b1, . . . , bp−1 ̸= 0,−1,−2, . . . ) is defined by

∞∑
n=0

(a1, n) · · · (ap−1, n)(ap, n)

(b1, n) · · · (bp−1, n)(1, n)
xn (|x | < 1).

It admits an Euler type integral, and satisfies

pFp−1 : (x
d

dx
+ a1) · · · (x

d

dx
+ ap)f (x) (HGDEp)

=
d

dx
(x

d

dx
+ b1 − 1) · · · (x d

dx
+ bp−1 − 1)f (x).

Set M0 = diag(1, e(−b1), . . . , e(−bp−1)),

M1 = Ip − (1− λ)H tv(vH tv)−1v , (4)

where v = (1, . . . , 1) ∈ Zp, λ = e(b1 + · · ·+ bp−1 − a1 − · · · − ap), and
H = diag(1, h1, . . . , hp−1) are given by unknowns h1, . . . , hp−1.
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Consider the eigenpolynomial G (t, h1, . . . , hp−1) of M0M1. It should has
solutions t = e(−a1), . . . , e(−ap), which yield a system of linear equations
of h1, . . . , hp−1. By solving it, we have the expression of M1:

Theorem 3.2

Suppose that a1, . . . , ap, b1, . . . , bp−1 are generic. Then H is determined
by

hj =

−
k ̸=j∏

1≤k≤p−1

(e(bk)− 1)
p∏

k=1

(e(ak)− e(bj))

e(bj)
k ̸=j∏

1≤k≤p−1

(e(bk)− e(bj))
p∏

k=1

(e(ak)− 1)

(1 ≤ j ≤ p − 1).

M1 is given by the substitution of these values into H of (4).
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4. Monodromy for Appell’s F4

Appell’s hypergeometric series F4 is defined by

F4(a, b, c; x) =
∞∑

n1,n2=0

(a, n1 + n2)(b, n1 + n2)

(c1, n1)(c2, n2)(1, n1)(1, n2)
xn11 xn22 ,

where a, b, c = (c1, c2) (c1, c2 ̸= 0,−1,−2, . . . ) are complex parameters.

It converges on {x = (x1, x2) ∈ C2 |
√
|x1|+

√
|x2| < 1}, admits an Euler

type integral with integrand

t−c1
1 t−c2

2 (1− t1 − t2)
c1+c2−a−2(1− x1/t1 − x2/t2)

−b,

and satisfies Appell’s hypergeometric system F4(a, b, c)[
x1(1− x1)∂

2
1 − x22∂

2
2 − 2x1x2∂1∂2 + {c1 − (a+ b + 1)x1}∂1

−(a+ b + 1)x2∂2 − ab
]
f (x) = 0,[

x2(1− x2)∂
2
2 − x21∂

2
1 − 2x1x2∂1∂2 + {c2 − (a+ b + 1)x2}∂2

−(a+ b + 1)x1∂1 − ab
]
f (x) = 0.
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Fact 4.1

F4(a, b, c) is a regular holonomic system of rank 4 with singular locus

S ={x ∈ C2 | x1x2R(x) = 0},
R(x) =(1− x1 − x2)

2 − 4x1x2

=(1−
√
x1−

√
x2)(1−

√
x1+

√
x2)(1+

√
x1−

√
x2)(1+

√
x1+

√
x2).

Fact 4.2

If c1, c2 /∈ Z, then there are 4 sol’s to F4(a, b, c) around x = (0, 0):

F4(a, b, c; x),

x1−c1
1 F4(a+ 1− c1, b + 1− c1, 2− c1, c2; x),

x1−c2
2 F4(a+ 1− c2, b + 1− c2, c1, 2− c2; x),

x1−c1
1 x1−c2

2 F4(a+ 2− c1 − c2, b + 2− c1 − c2, 2− c1, 2− c2; x).
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Set X = C2 − S , and ẋ = (ε, ε) for a small positive real number ε.

Fact 4.3 ([K])

π1(X , ẋ) is generated by loops ρ1, ρ2, ρ3. They satisfy relations
ρ1ρ2 = ρ2ρ1, (ρjρ3)

2 = (ρ3ρj)
2 (j = 1, 2).

x1

x2

ρ3

ρ2

ρ1
ẋ

R(x) = 0

ρ1 ρ3 ρ2
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M: the monodromy representation of F4,
F(x): a column vector aligned non-zero scalar multiples of sol’s in Fact 4.2,
Mj (j = 1, 2, 3): the representation matrix M(ρj) w.r.t. F(x).

Lemma 4

M1 =

 1
e(−c1)

1
e(−c1)

 , M2 =

 1
1

e(−c2)
e(−c2)

 .

Proof. It is clear by Fact 4.2.

Lemma 5

H: the intersection matrix of the basis of twisted homology group
corresponding to F(x). Then H is diagonal.

Proof. By MjH
tM∨

j = H (j = 1, 2), entries of H should be 0 except
diagonal ones.
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Set H = diag(1, h1, h2, h12) with unknowns h1, h2, h12.

Lemma 6

Suppose that M is irreducible. Then the 1-eigenspace of M3 is 3-dim.
λ (an unknown): the eigenvalue of M3 different from 1. If the
λ-eigenvector v satisfies vH tv∨ ̸= 0 then

M3 = I4 − (1− λ)H tv∨(vH tv∨)−1v , (5)

and we can normalize v to (1, 1, 1, 1) by non-zero scalar multiples.

Proof. There are 3 indep. integral areas {(t1, t2) ∈ R2 | t1, t2 < 0},
{(t1, t2) ∈ R2 | t1 < 0, t1 + t2 > 1}, {(t1, t2) ∈ R2 | t2 < 0, t1 + t2 > 1},
which are invariant under the continuation along ρ3. They span the
1-eigenspace of M3.
This space can be expressed as {w ∈ C4 | wH tv∨ = 0} by the
λ-eigenvector v . Thus M3 can be expressed as a reflection w.r.t. H.
If the j-entry of v is 0, then entries in j-th row and j-th column of M3

become 0 except (j , j)-entry. Since M1, M2 are diagonal, M is reducible.
Thus we can normalize v to (1, 1, 1, 1)
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To get M3 explicitly, we determine the unknowns h1, h2, h12 in H and the
eigenvalue λ of M3.

Theorem 4.4

Suppose that a, b, c1, c2 are generic.

h1 = −(e(c1)− e(a))(e(c1)− e(b))

e(c1)(e(a)− 1)(e(b)− 1)
,

h2 = −(e(c2)− e(a))(e(c2)− e(b))

e(c2)(e(a)− 1)(e(b)− 1)
,

h12 =
(e(c1 + c2)− e(a))(e(c1 + c2)− e(b))

e(c1 + c2)(e(a)− 1)(e(b)− 1)
,

λ = −e(c1 + c2 − a− b).

M3 is given by the substitution of these values into (5).
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Proof. Set x2 = 0, then F4(a, b, c1, c2; x1, x2) reduces to F (a, b, c1; x1).
Since this restriction corresponds to taking 1, 2-th rows from F(x), we can
determine h1 by the way in §2.

Similarly we can determine h2 by setting x1 = 0.

To determine h12, take 3, 4-th rows from F(x) divide x1−c2
2 , and consider

the restriction to x2 = 0. Since it is regarded as
F(a+ 1− c2, b + 1− c2, c1), h12/h2 is equal to h for
F(a+ 1− c2, b + 1− c2, c1) in §2.

By (ρ1ρ3)
2 = (ρ3ρ1)

2, we have (M1M3)
2 = (M3M1)

2, which yields a
quadratic equation w.r.t. λ. Its solutions are −e(c1 + c2 − a− b) and 1. If
λ = 1 then M3 = I4, and the monodromy representation is reducible.
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5. Monodromy for Lauricella’s FC

Appell’s F4(a, b, c1, c2; x1, x2) is generalized to Lauricella’s FC (a, b, c ; x):

FC (a, b, c; x) =
∞∑

n1,...,nm=0

(a, n1 + · · ·+ nm)(b, n1 + · · ·+ nm)

(c1, n1) · · · (cm, nm)(1, n1) · · · (1, nm)
xn11 · · · xnmm ,

where x = (x1, . . . , xm), a, b, c = (c1, . . . , cm) (c1, . . . , cm ̸=0,−1,−2, . . . )
are complex parameters.

It converges on {x = (x1, x2) ∈ C2 |
√
|x1|+ · · ·+

√
|xm| < 1}, admits an

Euler type integral, and satisfies Lauricella’s hypergeometric system

FC (a, b, c) :
[
xi (1− xi )∂

2
i − xi

j ̸=i∑
1≤j≤m

xj∂i∂j −
j1 ̸=i∑

1≤j1,j2≤m

xj1xj2∂j1∂j2

+{ci−(a+b+1)xi}∂i−(a+b+1)

j ̸=i∑
1≤j≤m

xj∂j−ab
]
f (x) = 0

for 1 ≤ i ≤ m.
Matsumoto (Hokkaido Univ.) Monodromy by the rigidity February 18, 2020 30 / 40



FC (a, b, c) is a regular holonomic system of rank 2m with singular locus
S = {(x1, . . . , xm) ∈ Cm | x1 . . . xmR(x) = 0}, where

R(x) =
∏

δ1,...,δm=±1

(1 + δ1
√
x1 + · · ·+ δm

√
xm).

Fact 5.1

If c1, . . . , cm /∈ Z, then there are 2m sol’s to FC (a, b, c) around (0, . . . , 0):[∏
i∈Ir

x1−ci
i

]
FC (a+

∑
i∈Ir

(1− ci ), b +
∑
i∈Ir

(1− ci ), c + 2
∑
i∈Ir

(1− ci )ei ; x),

where 0 ≤ r ≤ m, Ir = {i1, . . . , ir} ⊂ {1, . . . ,m}, and ei is the i-th unit
row vector of Cm.

FC (x): a column vector consisting of non-zero scalar multiples of sol’s in
Fact 5.1, where they are aligned by an order for Ir ⊂ {1, . . . ,m}:

∅, {1}, {2}, {1, 2}, {3}, . . . , {1, 2, 3}, {4}, . . . , {1, . . . ,m}.
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Set X = Cm − S , and ẋ = (ε, . . . , ε) for a small positive real number ε.

ρi (1 ≤ i ≤ m): a loop in X with terminal ẋ turning once positively
around xi = 0,
ρm+1 : that around R(x) = 0.

Fact 5.2 ([G],[GK],[T])

(i) π1(X , ẋ) is generated by loops ρ1, . . . , ρm, ρm+1.

(ii) They satisfy

ρjρk = ρkρj , (ρjρm+1)
2 = (ρm+1ρj)

2, (1 ≤ j < k ≤ m),

(ρ−1
J ρm+1ρJ)(ρ

−1
K ρm+1ρK ) = (ρ−1

K ρm+1ρK )(ρ
−1
J ρm+1ρJ),

where J,K ⊂ {1, . . . ,m} satisfying J ̸= ∅, K ̸= ∅, J ∩ K = ∅,
#J +#K ≤ m − 1, and ρJ =

∏
j∈J ρj .

(iii) The circuit transformation of ρm+1 for FC (a, b, c) is a reflection
w.r.t. the intersection form between twisted homology groups
associated with Euler type integrals.

Matsumoto (Hokkaido Univ.) Monodromy by the rigidity February 18, 2020 32 / 40



We can see the monodromy representation M of FC (a, b, c) by similar
consideration. Suppose that M is irreducible.

M1, . . . ,Mm,Mm+1: the circuit transformations of ρ1, . . . , ρm, ρm+1 for
FC (a, b, c) w.r.t FC (x).

M1, . . . ,Mm are diagonal matrices. The diagonal entry dj(I ) of Mj

corresponding a subset I ⊂ {1, . . . ,m} is

dj(I ) =

{
e(−cj) if j ∈ I ,

1 if j /∈ I .

By setting v = (1, . . . , 1) ∈ Z2m , H = diag(1, h1, h2, h12, . . . , h1...m) with
unknowns h1, h2, h12, . . . , h1...m, we can express Mm+1 as a complex
reflection

Mm+1 = I2m − (1− λ)H tv(vH tv)−1v (6)

where λ is an unknown, and vH tv is supposed to be non-zero.
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We can determine these unknowns.

Theorem 5.3

Suppose that a, b, c1, . . . , cm are generic.
For I ⊂ {1, . . . ,m} (I ̸= ∅),

hI = (−1)#(I ) (e(
∑

k∈I ck)− e(a))(e(
∑

k∈I ck)− e(b))

e(
∑

k∈I ck)(e(a)− 1)(e(b)− 1)
,

λ = (−1)m+1e(c1 + · · ·+ cm − a− b).

By substituting these values into (6), we have an expression of Mm+1.

Proof. By restricting FC (x) to xj = 0, we can determine hI inductively.
Substitute these into (6), then the expression of Mm+1 has an unknown λ.
By comparing components of (M1Mm+1)

2 = (Mm+1M1)
2 we have a

quadratic equation of λ, whose solutions are 1 and
(−1)m+1e(c1 + · · ·+ cm − a− b). Note that we cannot take λ = 1.
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6. A hypergeometric system in 2 variables of rank 9

In [KMO1], [KMO2], we study a hypergeometric function in x1, x2:

F
( a
B

; x
)
= F

( a1, a2, a3
b1, b2, 1
b3, b4, 1

; x1, x2
)

=
∞∑

n1,n2=0

(a1, n1 + n2)(a2, n1 + n2)(a3, n1 + n2)

(b1, n1)(b2, n1)(1, n1)(b3, n2)(b4, n2)(1, n2)
xn11 xn22 ,

which is defined by Kampé de Fériet.

This is a generalization of 3F2 since the restriction of F
( a
B

; x
)
to x2 = 0

or x1 = 0 reduces to 3F2
( a1, a2, a3

b1, b2
; x1

)
or 3F2

( a1, a2, a3
b3, b4

; x2
)
.
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Proposition 6.1

F
( a
B ; x

)
satisfies differential equations

θ1(b1 − 1 + θ1)(b2 − 1 + θ1)f (x)

= x1(a1 + θ1 + θ2)(a2 + θ1 + θ2)(a3 + θ1 + θ2)f (x),

θ2(b3 − 1 + θ2)(b4 − 1 + θ2)f (x)

= x2(a1 + θ1 + θ2)(a2 + θ1 + θ2)(a3 + θ1 + θ2)f (x),

where θi = xi
∂

∂xi
(i = 1, 2).

Proposition 6.2

The system F
( a
B

)
of differential equations in Proposition 6.1 is a regular

holonomic system of rank 9 with singular locus

S = {x ∈ C2 | x1x2R3(x) = 0}, R3(x) = (1− x1 − x2)
3 − 27x1x2.
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Set X = C2 − S , and ẋ = (ε, ε) for a small positive real number ε.

Theorem 6.3 ([KMO2][Theorem 6.1])

π1(X , ẋ) is isomorphic to⟨
ρ1, ρ2, ρ3

∣∣∣ ρ1ρ2 = ρ2ρ1, (ρjρ3)
3 = (ρ3ρj)

3 (j = 1, 2),

(ρ1ρ3ρ
−1
1 )(ρ2ρ3ρ

−1
2 ) = (ρ2ρ3ρ

−1
2 )(ρ1ρ3ρ

−1
1 )

⟩
.

We have 9 solutions to F
( a
B

)
around (0, 0) by using series with factors 1,

x1−b1
1 , x1−b3

1 , x1−b2
2 , x1−b4

2 , x1−b1
1 x1−b2

2 , x1−b1
1 x1−b4

2 , x1−b3
1 x1−b2

2 ,

x1−b3
1 x1−b4

2 .

We have the circuit transformations along ρi w.r.t. this fundamental
system by combining methods given in §3,4.

For details, refer to [KMO1], [KMO2].
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