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In this talk, we will see period mappings of toricK3 hypersurfaces. They
are controlled by differential equations. Moreover, we will see applications
of the period mapping to number theory.
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Please note that

• We shall omit precise proofs of results. If you have questions, please
come to me after the talk. I will try to give detailed explanations.

• In section 2, the speaker will talk about results of the works [N 2012],
[N 2013] and [Hashimoto-N-Ueda, preprint]. They appeared in
several past conferences, workshops or seminar talks.

• Section 3 will be based on resent results [N 2018], [N, preprint]
and [N-Shiga, preparing], motivated by the results of section 2.
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1 Periods of K3 surfaces

K3 surfaces can be regarded as a natural 2-dimensional extension of elliptic
curves. We will start with elliptic curves.

1.1 Introduction: Periods of elliptic curves

An elliptic curve E is a compact complex curve with genus g = 1.
By the Riemann-Roch theorem, we can see that the canonical bundle

KE is a trivial bundle. This means that there exists the unique holomorphic
1-form ω (̸= 0) on E up to a constant factor.

ô

ô

ô

ô

Γ1

Γ2
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Let H1(E,Z) be the 1-homology group (= group of 1-cycles) on E. We
can take 2 generators γ1, γ2 of H1(E,Z). Then,∫

γ1

ω

∫
γ2

ω

are called the period integrals on E.
If E is given by y2 = x(x− 1)(x−λ), ω is given by dx√

x(x−1)(x−λ)
and the

period integrals are solutions of the Gauss hypergeometric equation

2E1

(1
2
,
1

2
, 1;λ

)
.

The quotient ∫
γ2
ω∫

γ1
ω

∈ H

is called the period of E.

In this talk, we will introduce K3 surfaces as a natural extension of
elliptic curves.
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1.2 Basic properties of K3 surfaces

Definition 1.1. Let S be a compact complex surface. If H1(S,OS) = 0
and the canonical bundle KS is trivial, S is called a K3 surface.

A K3 surface is a 2 dimensional Calabi-Yau manifold. They are impor-
tant in not only mathematics but also theoretical physics.

Let ω be the holomorphic 2-form. Since KS is trivial, we can take ω
uniquely up to a constant factor.

Let γ be a 2-cycle on S. The integral∫
γ

ω

is called a period integral of S.
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Let S be a K3 surface. The structure of the 2-homology group (= the
group of 2-cycles on S) H2(S,Z) is well-known.

• rank(H2(S,Z)) = 22.

• H2(S,Z) admits a lattice structure by the canonical cup product
H2(S,Z) × H2(S,Z) → H4(S,Z) ≃ Z. This means that H2(S,Z)
admits an inner product. Namely,

H2(S,Z) = E8(−1)⊕ E8(−1)⊕ U ⊕ U ⊕ U.

where

E8(−1) =



−2 1
1 −2 1 O

1 −2 1
1 −2 1

1 −2 1 1
1 −2 0

O 1 0 −2 1
1 −2


, U =

(
0 1
1 0

)
.

This gives a unimodular lattice.
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H2(S,Z) has two important sub-lattices:

H2(S,Z) = NS(S)⊕ Tr(S).

• Néron-Severi lattice

NS(S) = Div(S)/algebraic equivalence (⊂ H2(S,Z)).
Letting ω be the holomorphic 2-form,

γ ∈ NS(S) ⇐⇒
∫
γ

ω = 0.

• Transcendental lattice

Tr(S) is the orthogonal complement of NS(S) with respect to the cup
product of H2(S,Z).

ρ = rankNS is called a Picard number. It is known that

NS(S) is of type (1, ρ− 1),

Tr(S) is of type (2, 20− ρ).
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Definition 1.2. Let S be a K3 surface. For a lattice M , we suppose that
there exists an embedding

ι : M ↪→ NS(S).

Then, the K3 surface S (more precisely, the pair (S, ι)) is called an
M-polarized K3 surface.

Definition 1.3. Let (S1, ι1), (S2, ι2) are M-polarized K3 surfaces. If there
exists a biholomorphic mapping f : S1 → S2 sarisfying ι1 = f ∗ ◦ ι2, (S1, ι1)
and (S2, ι2) are isomorphic as M-polarized K3 surfaces.

The set of isomorphism classes of M -polarized K3 surfaces is called the
moduli space of M -polarized K3 surfaces.
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Please recall that rank(H2(S,Z)) = 22. So, we have 22 period integrals.
The ratio

η′ =
(∫

γ1

ω :

∫
γ2

ω : · · · :
∫
γ22

ω
)
∈ P21(C)

is called the period of S.

In this talk, we consider the case of

M = NS(S).

Since we have
∫
γ ω = 0 for γ ∈ NS(S), the above period η′ can be

reduced to a more simple form.
Let γr+1, · · · , γ22 be a basis of M . Then, we have the reduced period

η =
(∫

γ1

ω : · · · :
∫
γr

ω
)
∈ Pr−1(C).
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In fact, the reduced period

η =
(∫

γ1

ω : · · · :
∫
γr

ω
)
∈ Pr−1(C).

satisfies the Riemann-Hodge relation

ηAtη = 0, ηAtη > 0,

where A is the intersection matrix of the transcendental lattice Tr(S).

Let us consider

D = {ξ ∈ Pr−1(C)|ξAtξ = 0, ξAtξ > 0}.

Any period η of M -polarized K3 surface is an element of D.
We note that D is a Hermitian symmetric space of type IV.
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The stable orthogonal group

Õ(A) = Ker(O(A) → O(A∨/A)) (⊂ O(A)),

where A∨ = Hom(A,Z), acts on D discontinuously.
We can consider the quotient space D/Õ(A).

Theorem 1.1. (stated in [Dolgachev 1996])
The moduli space of pseudo-ample marked M-polarized K3 surfaces is

given by D/Õ(A).

Remark 1.1. The speaker will omit the precise definition of “pseudo-ample
marked...” . This is an algebro-geometric property.

Remark 1.2. This theorem is essentially due to the Torelli theorem and
the surjectivity of period mappings of K3 surfaces, by [Piatetski-Shapiro
- Shafarevich 1971], [Rapoport 1977] and [Yau 1978].

Anyway, to study the moduli of K3 surfaces, we need to investigate the
periods of K3 surfaces.
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2 Toric K3 hypersurfaces and its moduli

Background of toric K3 hypersurface
A Calabi-Yau variety is a simply-connected complex variety with the

trivial canonical bundle.
2 dimensional Calabi-Yau varieties are K3 surfaces.

Batyrev (1994) gave a construction of Calabi-Yau varieties from Newton
polytopes.

If a certain Newton polytope P ⊂ Rn is given, we can obtain n −
1 dimensional Calabi-Yau variety as a divisor of n dimensional toric
variety.

So, if a Newton polytope is real 3 dimensional is given, we can obtain
3− 1 dimensional Calabi-Yau varieties, namely K3 surfaces.

In this talk, we only consider 3 dimensional Newton polytopes,
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2.1 Newton polytopes

In R3 = {(u, v, w)}, an inequality

au+ bv + cw ≤ 1, (aj, bj, cj) ∈ Z3

defines a half space in R3.
A bounded intersection P of several half spaces gives a polytope in R3.

If a polytope P satisfies the conditions

(a) every vertex is a point of Z3,

(b) the origin is the unique inner lattice point,

(c) only the vertices are the lattice points on the boundary,

then P is called a reflexive polytope with at most terminal singularities.

13



We summerize the construction of K3 surfaces (= 2 dimensional Calabi-
Yau varieties) from reflexive polytopes. (For details, please see the text-
books of toric varieties [Cox], [Oda], · · · .).

1. If a 3-dimensional reflexive polytope P is given, we can obtain the
corresponding fan ∆(P ) in R3 in a canonical way.

2. By a canonical argument of toric varieties, from a fan ∆(P ), we can
construct 3-dimensional toric variety

X = TNemb(∆(P )).

– By the general theory of toric varieties, we have

H1(X,OX) = 0, H2(X,OX(KX)) = 0.
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3. Then, we can easily see that anti-canonical section S ∼ −KX gives a
K3 surface as follows.

– By the adjunction formula,

KS = (KX + S)|S = (KX + (−KX))|S = 0.

– From the exact sequence

· · · → H1(X,OX) → H1(S,OS) → H2(X,OX(−S)) → · · · ,

we have H1(S,OS) = 0.

4. From such Newton polytopes, we can obtain generators of the vector
space of anti-canonical sections. Letting t1, t2, t3 be coordinates of X,

H0(X,OX(−KX)) = ⟨ta1tb2tc3⟩C

from the lattice points

u
v
w

 ∈ P ∩ Z3.
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In this talk, we shall focus on the special (and interesting) case for

the polytope P0 =

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2

 (columns gives the coordinates of

vertices).
We have 6 lattice points P0 ∩ Z3:u

v
w

 =

0
0
0

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

 0
0
−1

 ,

−1
−1
−2

 ∈ R3.

Then, we can an anti-canonical section S on X.

S : c1t
0
1t

0
2t

0
3 + c2t

1
1t

0
2t

0
3 + c3t

0
1t

1
2t

0
3 + c4t

0
1t

0
2t

1
3 + c5t

0
1t

0
2t

−1
3 + c6t

−1
1 t−1

2 t−2
3 = 0,

where c1, · · · , c6 ∈ C. Namely,

S : c1 + c2t1 + c3t2 + c4t3 + c5t
−1 + c6t

−1
1 t−1

2 t−2
3 = 0.
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We set

x =
c2t1
c1

, y =
c3t2
c1

, z =
c4t3
c1

, λ =
c4c5
c21

, µ =
c2c3c

2
4c6

c51
.

Then, S is transformed to the defining equation

S0(λ, µ) : xyz
2(x+ y + z + 1) + λxyz + µ = 0.

In this talk, we consider this defining equation.

In the following, we will see the meaning of the defining equation.

From our polytope P0 =

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 −2

 , we set P̃0 =


1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 −1 −2

 .

The matrix P̃0 gives a homomorphism Z6 → Z4 over Z.
Setting L = Ker(P̃0), we have the exact sequence

0 → L → Z6 P̃0−→ Z4 → 0.
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We can see that L is generated by 2 vectors

−2
0
0
1
1
0

 ,



−5
1
1
2
0
1

 .

Please note that our parameters λ, µ correspond these vectors.

λ =
c02c

0
3c

1
4c

1
5c

0
6

c21
=

c4c5
c21

, µ =
c12c

1
3c

2
4c

0
5c

1
6

c51
=

c2c3c
2
4c6

c51
Such a construction of parameters can be explained in the sense of

secondary stack.

Remark 2.1. Secondary stacks are studied by [Diemer-Katzarkov-Kerr
2016] for the purpose to study mirror symmetry of Calabi-Yau varieties.
We note that secondary stacks are also very closely related to the work
[Lafforgue 2003].
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1. By two generators of L = Ker(P̃0), we can obtain the matrix β̌ =(
−2 0 0 1 1 0
−5 1 1 2 0 1

)
. This gives a dual of the above sequence:

0 → Z4 β̌−→ Z6 → Ľ → 0.

This sequence is called a divisor sequence.

2. From the columns of the matrix of β̌, we obtain a fan in R2. This fan
is called a secondary fan FP0

of the polytope P0.
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3. A pair of a fan FP0
and the divisor sequence is called a secondary fan

in the sense of [Diemer-Katzarkov-Kerr 2016]. This is a special
case of stacky fan.

4. Generically, if a stacky fan is given, we can obtain a toric stack. (The
construction of toric stacks are given in [Borisov-Chena-Smith 2005].)

5. Especially, the toric stack derived from the secondary fan and the
divisor sequence is called the Secondary stack.

Our construction of λ, µ gives coordinates of the secondary stack XP0
.

More precisely,

Theorem 2.1. ([Hashimoto-N-Ueda, preprint]) The secondary stack
XP0

is given by a weighted blow up of weight (1, 2) of P(1 : 2 : 5) at one
point. Our (λ, µ) gives the coordinates of the maximal dense torus of XP0

.

For simplicity, we shall call (λ, µ) ”a system of coordinates of the sec-
ondary stack XP0

”.
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2.2 Lattice structure of our K3 hypersurface

We will consider the moduli of toric K3 hypersurface

S0(λ, µ) : xyz
2(x+ y + z + 1) + λxyz + µ = 0.

As we saw in the general theory of K3 surfaces, it is important to obtain
the Neron-Severi lattice and the transcendental lattice.

Theorem 2.2. ([N 2013]) For generic (λ, µ),
NS : E8(−1)⊕ E8(−1)⊕

(
2 1

1 −2

)

Tr : U ⊕

(
2 1

1 −2

)
.

Proof. (sketch)
By a birational transformation (x, y, z) 7→ (x1, y1, z1), we can obtain an

elliptic fibration π : S0(λ, µ) 7→ P1(C).
The singular fibres of this elliptic surface are illustrated as follows.

21



a1

a0

a3

a2

a4

a5

a6

b0
b1

b2
b3

b5

b4

b6
b7

b8
b9

HOL

HRL

F

• By an application of the theory of Mordell-Weil lattices for elliptic
surfaces, we can see that ρ = rank(NS(S0(λ, µ))) = 18 for generic
(λ, µ).

• We can take 18 appropriate divisors from sections of π and components
of singular fibres.
−→ They give a basis of NS(S0(λ, µ)).

• We can determine the structure of NS and Tr.

For detail, please see [N 2013]
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So, let A be the intersection matrix of the transcendental lattice:

A = U ⊕
(
2 1
1 −2

)
.

The moduli space of S0(λ, µ) is given by D/Õ(A), where

D = {ξ = (ξ1, ξ2, ξ3, ξ4) ∈ P4(C)|ξAtξ = 0, ξAtξ > 0}.

The period mapping for S0(λ, µ) defines a multivalued mapping

XP0
→ D,

given by

(λ, µ) 7→
(∫

γ1

ω :

∫
γ2

ω :

∫
γ3

ω :

∫
γ4

ω
)
.

By virtue of the Torelli’s theorem and the surjectivity of the period map-
ping, this induces a birational mapping

XP0
99K D/Õ(A).
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Remark 2.2. There exist a dual polytope P̌ . From P̌ , we can obtain the
toric variety X̌ and the corresponding K3 sufrace Š (called the mirror
of S). The Dolgachev conjecture is the relation between the lattice
structures of S and Š:

Tr(S) = U ⊕ NS(Š).

This is very important from the viewpoint of mirror symmetry of toric K3
hypresurfaces.

In our case, we can calculate NS(Š0) by a direct application of Moisezon
Theorem ([Koike 1998]):

NS(Š0) =

(
2 1
1 −2

)
.

Then, the Dolgachev conjecture holds for our P0.
In [Hashimoto-N-Ueda, preprint], it is proved that the Dolgachev

conjecture for reflexive polytopes for 5 vertices is true.
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2.3 Gauss-Manin Connections

The period integral
∫
γ ω vary by the parameters λ and µ. In this subsection,

we will see the behavior of period integrals.
The holomorphic 2-form of S0(λ, µ) is explicitely given by

ω =
zdz ∧ dx

∂F/∂y
,

where F = xyz2(x+ y + z + 1) + λxyz + µ.
By taking an appropriate 2-cycle γ and applying the residue theorem,

we have the expression of our period integrals:∫
γ

ω =
1

2π
√
−1

∫∫∫
∆

zdz ∧ dx ∧ dy

xyz2(x+ y + z + 1) + λxyz + µ

= (2π
√
−1)2

∞∑
n,m=0

(−1)m
(5m+ 2n)!

(m!)3n!(2m+ n)!
λnµm,

for a 3-cycle ∆ in the toric 3-fold XP0
.
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The triple integral 1
2π

√
−1

∫∫∫
∆

zdz∧dx∧dy
xyz2(x+y+z+1)+λxyz+µ , is a solution of the

GKZ system
(θ1 + θ2 + θ3 + θ4 + θ5 + θ6)η = −η,

(θ2 − θ6)η = 0, (θ3 − θ6)η = 0, (θ4 − θ5 − 2θ6)η = 0,

∂2

∂c4∂c5
η =

∂2

∂c21
η,

∂5

∂c2∂c3∂c24∂c6
η =

∂5

∂5c1
η.

from the data P̃0 =


1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 −1 −2

 , β =


−1
0
0
0

 and

Ker(P̃0) = L =

⟨

−2
0
0
1
1
0

 ,


−5
1
1
2
0
1


⟩
.
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By considering the definition of λ and µ, the above system is transformed
to {

D
(0)
1 = θλ(θλ + 2θµ)− λ(2θλ + 5θµ + 1)(2θλ + 5θµ + 2),

D
(0)
2 = λ2θ3µ + µθλ(θλ − 1)(2θλ + 5θµ + 1).

Our period integrals∫∫
γ

ω =
1

2π
√
−1

∫∫∫
∆

zdz ∧ dx ∧ dy

xyz2(x+ y + z + 1) + λxyz + µ
,

are solutions of this system.

But, the GKZ system is not enough to study the periods of our K3
surfaces, precisely.
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• The period integrals are solutions of the above GKZ differential equa-
tion. In fact, the space of solutions of the GKZ system is 6 dimensional
vector space.

• Please recall the form of our period mapping.

(λ, µ) 7→
(∫

γ1

ω :

∫
γ2

ω :

∫
γ3

ω :

∫
γ4

ω
)
.

We only have 4 period integrals.

This means that the GKZ equation contains 2 dimensional unnecessary
solutions that are not coming from the periods of K3 surfaces.
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We need a differential equation of rank 4 whose space of solutions is
generated by 4 periods of our K3 surface.

Such a differential equation coincides with the Gauss-Manin connec-
tion for the deformation of Hodge structure of ourM -polarizedK3 surfaces
{S0(λ, µ)}.

So, we need to obtain 4 dimensional subsystem of the GKZ system for
periods of K3 surfaces.

Gauss-Manin Connection of rank 4 ⊂ GKZ system of rank6
Solution = Periods Solution = Periods and others
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Theorem 2.3. ([N 2012]) Set{
D

(0)
1 = θλ(θλ + 2θµ)− λ(2θλ + 5θµ + 1)(2θλ + 5θµ + 2),

D
(0)
3 = λ2(4θ2λ − 2θλθµ + 5θ2µ)− 8λ3(1 + 3θλ + 5θµ + 2θ2λ + 5θλθµ) + 25µθλ(θλ − 1).

The Gauss-Manin connection for our case is given by

D
(0)
1 u = D

(0)
3 u = 0.

Proof. (sketch) By a hard (and not sophisticated) calculation of a method
of undetermined coefficients using the power series expansion∫

γ

ω = (2π
√
−1)2

∞∑
n,m=0

(−1)m
(5m+ 2n)!

(m!)3n!(2m+ n)!
λnµm,

we can directly determine the Gauss-Manin connection as a subsystem of
the GKZ system (for detail, see [N 2012]).
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2.4 Moduli space = Hilbert modular surface

In fact, our moduli space is closely related to a Hilbert modular surface.
Let F be a real quadratic field and let OF be the ring of integers. Let

a 7→ a′ be the conjugate of F over Q.

The matrix

(
a b
c d

)
of the Hilbert modular group SL(2,OF ) acts on

H×H by

(z1, z2) 7→
(az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.

Also, we consider the action τ : (z1, z2) 7→ (z2, z1).
In this talk, we consider the case of F = Q(

√
5).

Remark 2.3. F = Q(
√
5) is the simplest real quadratic field.

Q(
√
5) Q(

√
2) Q(

√
3) Q(

√
13) Q(

√
17)

discriminant 5 8 12 13 17
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Please recall the transcendental lattice A = U ⊕
(
2 1
1 −2

)
, and the

Hermitian symmetric space

D = {η ∈ P3(C)|ηAtη = 0, ηAtη > 0} = D+ ∪ D−.

In this case, there exists a modular isomorphism between H × H and
D+:

H×H biholomorphic−−−−−−−−→ D+

/⟨PSL(2,OF ),τ⟩
y y/Õ+(A)

(H×H)/⟨SL(2,OF ), τ⟩ −−−−−−−−→
biholomorphic

D+/Õ
+(A) = D/Õ(A)

• (H×H)/⟨SL(2,OF ), τ⟩ is called the Hilbert modular surface. Due
to [Hirzebruch 1977], the Hilbert modular surface for F = Q(

√
5)

can be compactified by adding one cusp. The compactification is equal
to the weighted projective space P(1 : 3 : 5):

D+/Õ+(A) ≃ (H×H)/⟨SL(2,Z), τ⟩ ≃ P(1 : 3 : 5).
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• We have a period mapping

XP0

multivalued−−−−−−→ D+
biholomorphic−−−−−−−→ H×H

given by

(λ, µ) 7→ (z1, z2) =

(
−
∫
Γ3
ω + 1−

√
5

2

∫
Γ4
ω∫

Γ2
ω

,−
∫
Γ3
ω + 1+

√
5

2

∫
Γ4
ω∫

Γ2
ω

)
.

• From the Torelli theorem of K3 surfaces for the polarization M =

E8(−1)⊕ E8(−1)⊕
(
2 1
1 −2

)
, we have a birational mapping

XP0
99K P(1 : 3 : 5).
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2.5 The secondary stack and the moduli space

In this subsection, we will obtain the explicit expression of the birational
mapping

XP0
99K P(1 : 3 : 5) = Spec(C[A,B,C])

(λ, µ) 7→ (X, Y ) =
(B
A3

,
C

A5

)
We will apply the theory of holomorphic conformal structure of

partial differential equations, which were developed by Sasaki and Yoshida.

Remark 2.4. Holomorphic conformal structures are symmetric 2-tensors.
They are originaly studied in differential geometry.

[Sasaki-Yoshida 1979] studied them from the view point of differential
equations. We apply their results to our cases.
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• The holomorphic conformal structure of the Gauss-Manin connection:

Ψ(λ,µ) =
2µ(−1 + 15λ+ 100λ2)

λ+ 16λ2 − 80λ3 + 125µ
(dλ)2 + 2(dλ)(dµ) +

2(λ2 − 8λ3 + 16λ4 + 5µ− 50λµ)

µ(λ+ 16λ2 − 80λ3 + 125µ)
(dµ)2.

· · ·This is calculated from the viewpoint of partial differential equa-
tion.

• The holomorphic conformal structure of the Hilbert modular surface
(H×H)/⟨PSL(2,O), τ⟩ is calculated by [T. Sato 1990]:

Ψ(X,Y ) =
−20(4X2 + 3XY − 4Y )

36X2 − 32X − Y
(dX)2+(dX)(dY )+

−2(54X3 − 50X2 − 3XY + 2Y )

5Y (36X2 − 32X − Y )
(dY )2.

· · ·This is calculated by the geometric structure of the orbifold (H×
H)/⟨SL(2,OF ), τ⟩. (= differential geometry)

These two holomorphic conformal structure are calculated from different
view points.
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However, by the properties of ourK3 surfaces, there must be a birational
transformation φ : (λ, µ) 7→ (X, Y ) such that

φ∗(Ψ(X,Y )) = Ψ(λ,µ).

We can uniquely determine φ.

Theorem 2.4. ([N 2013], [Hashimoto-N-Ueda, preprint]) The bira-
tional mapping φ given by

(λ, µ) 7→ (1 : X : Y ) =
(
1 :

25µ

2(λ− 1/4)3
: − 3125µ2

(λ− 1/4)5

)
.

is a birational mapping

XP0
99K D/Õ(A) ≃ P(1 : 3 : 5).

(Rem) This theorem implies that

Q(X, Y ) = Q(λ, µ).

So, roughly, arithmetic properties of (λ, µ) is equal to those of (X,Y ).
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• The parameters (λ, µ) are coordinate of the secondary stack.

→ This is due to toric varieties and closely related to mirror symmetry
of K3 surfaces.

• The coordinates (X, Y ) are obtained from a Hilbert modular surface.

→ It concerns to Hilbert modular functions. They are important
in number theory.

· · · Here,

Definition 2.1. A Hilbert modular function is a meromorphic function
on H×H which is invariant under the action of the Hilbert modular group.

So, the above explicit theorem gives an explicit relation between the
toric K3 surfaces and number theory.
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3 Recent results

3.1 Arithmetic properties of (λ, µ)

If an elliptic curve with the period z =

∫
γ2

ω∫
γ1

ω
∈ H is given by y2 = 4x3 −

g2x− g3, the elliptic j-function is given by

H ∋ z 7→ j(z) =
g32(z)

g2(z)3 − 27g23(z)
.

The j-function is an elliptic modular function for SL2(Z).
This has a very good arithmetic property. If one takes an imaginary

quadratic field K, then K defines CM-points zK on H.

Theorem (Kronecker’s Jugendtraum) K(j(zK))/K is an absolute class
field (=maximal unramified abelian extension).

• Especially,

Gal(K(j(zK))/K) ≃ Ideal class group IK/PK of K.
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Our X-function and Y -function can be regarded as a natural counter-
part of j-function.

Let F be the real quadratic field for the smallest discriminant (F =
Q(

√
5)). Let K be an imaginary quadratic extension of F (CM-field).

Due to Shimura, K defines a CM-point (z1,K , z2,K) ∈ H × H. We have
special values λ(z1,K , z2,K), µ(z1,K , z2,K).

Theorem (Arithmetic properties of (λ, µ), [N 2018])
For any CM-field K over F, K∗(λ(z1,K , z2,K), µ(z1,K , z2,K))/K

∗ gives an
unramified class field.

• We note that
Q(λ, µ) = Q(X, Y ).

• K∗ is the reflex field of K. This is also a CM-field. This is defined
by the CM-type of K in the sense of [Shimura, 67].
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Proof. (sketch)

Step 1. Theta expression.
– On H×H, there are theta functions, like

ϑ0(z1, z2)

=
∑

m,n∈Z
exp

(π√−1

2
√
5

(m,n)

(
(1 +

√
5)z1 − (1−

√
5)z2 2(z1 − z2)

2(z1 − z2) −(1−
√
5)z1 + (1 +

√
5)z2

)(
m
n

))
,

due to Freitag and Müller. Comparing the properties of periods
and theta functions, we can obtain a theta expression of (X, Y ).

Step 2. Application of the theory of Shimura varieties.

– Theta functions are often compatible with Shimura varieties. In
our case, our theta expression give the canonical model of the
Shimura variety (in the sense of the original work [Shimura,
67]) for a Hilbert modular surface.

→ Special values of X,Y generate class fields.

■ Theta expression is a key of applications to number theory in our case.
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3.2 Other families of K3 surfaces from the viewpoint of reflec-
tion groups

Recalling (λ, µ) 7→ (X,Y ) = (B
A3 ,

C
A5 ) = ( 25µ

2(λ−1/4)3 : − 3125µ2

(λ−1/4)5 ), our toric
hypresurfaces

xyz2(x+ y + z + 1) + λxyz + µ = 0.

is birationally equivalent to

z21 = x31 − 4(4y31 − 5Ay21)x
2
1 + 20By31x+ Cy41.

This K3 surface is parametrized by

(A : B : C) ∈ P(1 : 3 : 5) = P(2 : 6 : 10).

These parameters can be considered as the invariants of icosahedral
group studied by Klein (see [Hirzebruch 1976] and [N 2013] ).

• The icosahedral group is characterized as one of the complex reflection
groups, listed by [Shepherd-Todd, 1954].
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Shepherd-Todd Weight K3 surfaces

No. 1 real (root An)
No. 2 real (root Bn = Cn)
No. 3 real (root Dn)
· · ·

No. 8 complex, rank 2 8, 12 [Shioda-Inose 1977]
· · ·

No. 23 complex, rank 3 2, 6, 10 [N 2013]
· · ·

No. 31 complex, rank 4 8, 12, 20, 24 [Clingher-Doran 2012]
· · ·

No. 33 complex, rank 5 4, 6, 10, 12, 18 [N preprint]
No. 34 complex, rank 6 6, 12, 18, 24, 30, 42 (The speaker is trying...)
No. 35 real, rank 6 (root E6)
No. 36 real, rank 7 (root E7)
No. 37 real, real 8 (root E8)

It is seems that there are good families of K3 surfaces attached to
complex reflection groups.

On the other hand, there are good combinatrial techniques based on
complex reflection groups for theta functions (by [Runge 1993], etc.).
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• No.8

– Shioda-Inose family

y2z − 4x3z + 3αxz + βz +
1

2
= 0.

– wt(α, β) = (4, 6) = 1
2(8, 12)

→ Elliptic modular forms with Jacobi’s theta expression.

• No.23 → Hilbert modular forms (as in this talk)

• No.31

– Clingher-Doran family

y2z − 4x3z + 3αxz + βz + γxz2 − 1

2
(δz2 + 1) = 0.

– wt(α, β, γ, δ) = (4, 6, 10, 12) = 1
2(8, 12, 20, 24)

→ Siegel modular forms with Igusa’s theta expression
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• No.33
– [N, preprint] shows that the transcendental lattice A for

z2 = y3 + (t4x
4 + t10x

3)y + (x7 + t6x
6 + t12x

5 + t18x
4)

has a very good arithmetic property of quadratic forms, called
Kneser conditions.

→ We can study the orbifold structure of D/Õ(A) effectively.

– (t4, t6, t10, t12, t18)
→ Hermitian modular forms expressed by theta functions for
the root lattice A2 ([N-Shiga, preparing]).

• No.34 : The speaker is investigating.

The speaker is curious about such a relation among complex reflection
groups, K3 surfaces and theta functions with applications to number the-
ory. The speaker expects the results of No.33 and No.34 will give test cases
of complex multiplication of K3 surfaces proposed by M. Schütt etc..

Thank you very much for your kind attention.
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