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The (classical) Nagata conjecture is one of the most stimulating problems for linear systems on
the complex projective plane P2. It predicts the inequality d > 1√

r

∑r
i=1mi, where d is the degree of

any curve C on P2 such that multxi(C) ≥ mi, mi being non-negative integers and {xi}ri=1, r ≥ 10,
very general points in P2. Nagata proved this result when r is a square and it is an open problem in
the remaining cases.

The Seshadri-type constant µ̂D(ν) of a divisorial valuation ν of a surface S relative to a big divisor
D on S is defined to be

µ̂D(ν) := lim
m→∞

max{ν(f) | f ∈ H0(S,OS(mD))}
m

.

The valuation ν is called minimal with respect to a big divisor D on S if

µ̂D(ν) =

√
volS(D)

vol(ν)
.

The valuative Nagata conjecture states that if ν is a very general plane valuation of P2 such
that its normalized volume satisfies [volN (ν)]−1 ≥ 9, then ν is minimal.

This conjecture implies the classical Nagata conjecture and it is implied by the Greuel-
Lossen-Shustin conjecture.

In the talk we consider a smooth (complex) projective surface S, an ample divisor D on S and a
divisorial valuation ν of S. As a main result, we show the existence of several equivalent statements to
the minimality of ν with respect to D, which provides several equivalent statements to the valuative
Nagata conjecture in terms of interesting algebraic and geometric tools.

In particular, we introduce a (previously undefined) Seshadri constant, and relate minimal valu-
ations to this constant, Newton-Okounkov bodies, Zariski chambers and nef divisors of the surfaces
determined by the valuations.

Our results provide a framework for stating a (valuative) Nagata conjecture for smooth surfaces.
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