
MATH 371
HOMEWORK SET 1

DUE 17.10.2012, WEDNESDAY

Remember: x, y, z, etc. a, b, etc. , A, B, etc. stand for integers! p stand ALWAYS for a prime number
(1) Show that

232 + 1 ≡ 0( mod 641).

(Hint: Eliminate y from the equation x4 + y4 = x7y+ 1 and use 24 + 54 = 275+ 1)

Solution 1 (due to Coxeter?). Note that 54+24 = 5 ·27+1 = 641. So 641|228(24+54). Since (x+1)|x4−1 we also
have 641|(5 ·27)4−1 = 54 ·228−1. So 641 divides the difference of two numbers: 228(24+54)−(54 ·228−1) = 232+1.

(2) Prove that if 2k − 1 is a prime number, then

2k−1(2k − 1)

is a perfect number.(Remember: A number n is called perfect if σ(n) − n = n.)

Solution 2. Note the following:

σ(n) − n = σ(2k−1(2k − 1)) − 2k−1(2k − 1)

= σ(2k−1)σ(2k − 1) − 2k−1(2k − 1), 2k − 1 is prime

=
2k − 1

2− 1
(1+ 2k − 1) − 2k−1(2k − 1)

= 2 · 2k−1(2k − 1) − 2k−1(2k − 1)

= n.

(3) Prove that if f(n) is multiplicative then

g(n) =
∑
d|n

f(d)

is also multiplicative.

Solution 3. Let m and n be two relatively prime integers. This implies that their set of divisors is disjoint. Hence we
have:

g(m)g(n) =
∑
d|m

f(d)
∑
e|n

f(e)

=
∑

d|m and e|n

f(d)d(e)

=
∑

d|m and e|n

f(d · e)

=
∑

D|mn

f(D)

= g(mn).

(4) Euler’s totient or phi function, ϕ(n) is a function that counts the number of positive integers less than or equal
to n that are relatively prime to n. For example, ϕ(6) = 1 as there is only 5 which is both smaller than 6 and
relatively prime to 6.

i. Compute ϕ(p).
ii. Show that ϕ is multiplicative.(Recall that a function f is multiplicative if f(m)f(n) = f(mn) whenever

(m,n) = 1. Hint: You will need Chinese Remainder Theorem!)
iii. Find a formula for ϕ(pk).



Solution 4. i. Since p is a prime, it is relatively prime to all numbers, except 1, smaller than p, that is ϕ(p) = p− 1,
if p > 2. ϕ(3) = 1.

ii. Given two relatively prime integersm and n we have:

ϕ(m)ϕ(n) = #{d |d < m and (d,m) = 1} ·#{e | e < n and (e, n) = 1}

= #{d · e |d · e < m · n and (d · e,m · n) = 1}
= #{D |D < m · n and (D,m · n) = 1} by Chinese Remainder Theorem
= ϕ(m · n).

iii.

ϕ(pk) = (ϕ(p))k, by ii.

= (p− 1)k, by i.

if p is an odd prime. ϕ(2k) = #{ odd numbers satisfying 1 < d < 2k} for any k.

(5) Find x and y satisfying
54x+ 17y = 136

Solution 5. Note that 54 and 17 are relatively prime with

6 · 54+ (−19)17 = 1

. So, x = 136 · 6 and y = 136 · (−19) are solutions of the above Diophantine equation.

(6) If exists, find all solutions of
39x+ 47y = 4151

in positive integers.

Solution 6. Note again (−6)39+ 5 47 = 1. By Theorem 4 in our notes, we know that all solutions are of the form:

x = −6+ t · 47 and y = 5+ t · 39

As we want all the solutions to be in positive integers x = −6 + t · 47 implies that t ≥ 1. And for every such t both
components are positive. Thus, all positive solutions are:

{(x, y) | x = −6+ t · 47 and y = 5+ t · 39, t > 0}.

Note: For your future Euclidean algorithm computations you may use the web-site
http://www.math.sc.edu/~sumner/numbertheory/euclidean/euclidean.html

(7) Show that if there are integer solutions to the equation

ax+ by+ cz = d

then the greatest common divisor of a, b and c divides d

Solution 7. Let xo, yo and zo be the integer solutions, and letD be the greatest common divisor of a, b and c and write
a = Da ′, b = Db ′ and c = Dc ′. Then

d = ax+ by+ cz = D(a ′x+ b ′y+ c ′z).

Thus D|d.

(8) Prove Theorem 5 in your notes.

Solution 8. See http: // fermatslasttheorem. blogspot. com/ 2005/ 05/ pythagorean-triples-solution.
html for a readable proof.

(9) If xo, yo, zo are integers satisfying

x2 + y2 + z2 = 3xyz

then show that x1 = xo, y1 = yo and z1 = 3xoyo − zo are also solutions. Describe in detail how this can be
used to find infinitely many solutions in positive integers starting with xo = yo = zo = 1.



Solution 9. Let us first show that x1 = xo, y1 = yo and z1 = 3xoyo − zo are solutions. For this:

x21 + y
2
1 + z

2
1 = x2o + y2o + (3xoyo − zo)

2

= x2o + y2o + 9x2o y
2
o − 6xo yo zo + z2o

= 3xoyozo + 9x2o y
2
o − 6xo yo zo

= 9x2o y
2
o − 3xo yo zo

= 3xoyo(3xoyo − z0)

= 3x1y1z1.

Note also that xo = yo = zo = 1 is a solution. However, a direct use of this this solution will not give rise to infinitely
many solutions. But, replacing zi by yi and using the above formulae we get:

xo = yo = zo = 1 −→ x ′1 = 1, y ′
1 = 1, z ′1 = 3xoyo − zo = 3− 1 = 2 −→ x1 = 1, y1 = 2, z1 = 1

−→ x ′2 = 1, y ′
2 = 2z ′2 = 3x1y1 − z1 = 6− 1 = 5 −→ x2 = 1, y2 = 5, z2 = 2

−→ x ′3 = 1, y ′
3 = 5z ′3 = 3x2y2 − z2 = 15− 2 = 13 −→ x3 = 1, y3 = 13, z3 = 5

−→ ...

(10) i. Given a binary quadratic form f(x, y) = Ax2 +Bxy+Cy2 with ∆ is a perfect square describe all solutions
of the equation

f(x, y) = p.

assuming (A,B,C) = 1.
ii. Explain what happens if (A,B,C) 6= 1.

iii. Use your previous result to find all solutions of the equation

2x2 + 5xy+ 2y2 = 5

Solution 10. i. If ∆ is a perfect square then f(x, y) can be written as a product of two linear factors having integer
coefficients:

(αx+ βy)(γx+ δ y).

Since we are interested in integer solutions, it is enough to solve the following two system of linear Diophantine
equations:

αx+ βy = ±1 and γx+ δ y = ±p
αx+ βy = ±p and γx+ δ y = ±1.

The two systems are symmetric, so we’ll focus on the first one. In order γx+ δ y = ±p to have solution (γ, δ) = 1
or p. However if (γ, δ) = p we have p|A = αγ, p|B = αδ+ βγ and p|C = βδ, but we assumed that the greatest
common divisor of A, B and C is 1, contradiction. So, we must have both (α,β) = 1 and (γ, δ) = 1. Otherwise
there are no solutions. The solution set is then the common solutions of the first system union the solutions of the
second system.

ii. If the greatest common divisor of A, B and C is not 1, or p then the equation does not have any solution!
iii. The greatest common divisor of 2 and 5 is 1. And ∆ = B2 − 4AC = 9 = 32 so we will solve

2x2 + 5xy+ 2y2 = (2x+ y)(x+ 2y) = 5

We have to solve four equation systems. The first one is

2x+ y = 1 and x+ 2y = 5.

A solution to the first one is x = 1, y = −1, so all solutions can be written as x = 1 + t 1 and y = −1 − t 2. All
solutions to the equation

x+ 2y = 5

are given as x = 1+ 2 s and y = 2− s. We must have

1+ t = 1+ 2 s and − 1− 2t = 2− s ⇔ t = 2s and s− 2t = 3⇔ s = −1 and t = −2.

All the remaining cases:

2x+ y = −1 and x+ 2y = −5

2x+ y = 5 and x+ 2y = 1

2x+ y = −5 and x+ 2y = −1

are solved in a similar fashion.


