MATH 371 HOMEWORK SET 1 DUE 17.10.2012, WEDNESDAY

Remember: x, y, z, etc. a, b, etc. , A, B, etc. stand for integers! p stand ALWAYS for a prime number (1) Show that

$$2^{32} + 1 \equiv 0 \pmod{641}$$
.

(<u>Hint</u>: Eliminate y from the equation $x^4 + y^4 = x^7y + 1$ and use $2^4 + 5^4 = 2^75 + 1$)

Solution 1 (due to Coxeter?). Note that $5^4 + 2^4 = 5 \cdot 2^7 + 1 = 641$. So $641|2^{28}(2^4 + 5^4)$. Since $(x+1)|x^4 - 1$ we also have $641|(5 \cdot 2^7)^4 - 1 = 5^4 \cdot 2^{28} - 1$. So 641 divides the difference of two numbers: $2^{28}(2^4 + 5^4) - (5^4 \cdot 2^{28} - 1) = 2^{32} + 1$.

(2) Prove that if $2^k - 1$ is a prime number, then

$$2^{k-1}(2^k-1)$$

is a perfect number.(Remember: A number n is called perfect if $\sigma(n) - n = n$.)

Solution 2. *Note the following:*

$$\begin{split} \sigma(n) - n &= \sigma(2^{k-1}(2^k - 1)) - 2^{k-1}(2^k - 1) \\ &= \sigma(2^{k-1}) \, \sigma(2^k - 1) - 2^{k-1}(2^k - 1), \, 2^k - 1 \text{ is prime} \\ &= \frac{2^k - 1}{2 - 1} \, (1 + 2^k - 1) - 2^{k-1}(2^k - 1) \\ &= 2 \cdot 2^{k-1}(2^k - 1) - 2^{k-1}(2^k - 1) \\ &= n. \end{split}$$

(3) Prove that if f(n) is multiplicative then

$$g(n) = \sum_{d|n} f(d)$$

is also multiplicative.

Solution 3. Let m and n be two relatively prime integers. This implies that their set of divisors is disjoint. Hence we have:

$$g(m) g(n) = \sum_{d|m} f(d) \sum_{e|n} f(e)$$

$$= \sum_{d|m \text{ and } e|n} f(d)d(e)$$

$$= \sum_{d|m \text{ and } e|n} f(d \cdot e)$$

$$= \sum_{D|mn} f(D)$$

$$= q(mn).$$

- (4) Euler's totient or phi function, $\varphi(n)$ is a function that counts the number of positive integers less than or equal to n that are relatively prime to n. For example, $\varphi(6) = 1$ as there is only 5 which is both smaller than 6 and relatively prime to 6.
 - i. Compute $\varphi(p)$.
 - ii. Show that φ is multiplicative.(Recall that a function f is multiplicative if f(m)f(n) = f(mn) whenever (m, n) = 1. <u>Hint:</u> You will need Chinese Remainder Theorem!)
 - iii. Find a formula for $\varphi(p^k)$.

Solution 4. i. *Since* p *is a prime, it is relatively prime to all numbers, except* 1*, smaller than* p*, that is* $\varphi(p) = p - 1$ *, if* p > 2. $\varphi(3) = 1$.

ii. Given two relatively prime integers m and n we have:

$$\begin{split} \varphi(\mathfrak{m}) \ \varphi(\mathfrak{n}) &= \#\{d \mid d < \mathfrak{m} \text{ and } (d, \mathfrak{m}) = 1\} \cdot \#\{e \mid e < \mathfrak{n} \text{ and } (e, \mathfrak{n}) = 1\} \\ &= \#\{d \cdot e \mid d \cdot e < \mathfrak{m} \cdot \mathfrak{n} \text{ and } (d \cdot e, \mathfrak{m} \cdot \mathfrak{n}) = 1\} \\ &= \#\{D \mid D < \mathfrak{m} \cdot \mathfrak{n} \text{ and } (D, \mathfrak{m} \cdot \mathfrak{n}) = 1\} \text{ by Chinese Remainder Theorem} \\ &= \varphi(\mathfrak{m} \cdot \mathfrak{n}). \end{split}$$

iii.

$$\phi(p^k) = (\phi(p))^k, by \, ii.$$

= $(p-1)^k, by \, i.$

if p *is an odd prime.* $\varphi(2^k) = \#\{ \text{ odd numbers satisfying } 1 < d < 2^k \}$ for any k.

(5) Find x and y satisfying

$$54x + 17y = 136$$

Solution 5. Note that 54 and 17 are relatively prime with

$$6 \cdot 54 + (-19)17 = 1$$

. So, $x = 136 \cdot 6$ and $y = 136 \cdot (-19)$ are solutions of the above Diophantine equation.

(6) If exists, find all solutions of

$$39x + 47y = 4151$$

in positive integers.

Solution 6. Note again (-6)39 + 547 = 1. By Theorem 4 in our notes, we know that all solutions are of the form:

$$x = -6 + t \cdot 47$$
 and $y = 5 + t \cdot 39$

As we want all the solutions to be in positive integers $x = -6 + t \cdot 47$ implies that $t \ge 1$. And for every such t both components are positive. Thus, all positive solutions are:

$$\{(x, y) | x = -6 + t \cdot 47 \text{ and } y = 5 + t \cdot 39, t > 0\}.$$

Note: For your future Euclidean algorithm computations you may use the web-site http://www.math.sc.edu/~sumner/numbertheory/euclidean/euclidean.html (7) Show that if there are integer solutions to the equation

$$ax + by + cz = d$$

then the greatest common divisor of a, b and c divides d

Solution 7. Let x_0 , y_0 and z_0 be the integer solutions, and let D be the greatest common divisor of a, b and c and write a = D a', b = D b' and c = D c'. Then

$$\mathbf{d} = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} = \mathbf{D}(\mathbf{a}'\mathbf{x} + \mathbf{b}'\mathbf{y} + \mathbf{c}'\mathbf{z}).$$

Thus D|d.

(8) Prove Theorem 5 in your notes.

Solution 8. See http://fermatslasttheorem.blogspot.com/2005/05/pythagorean-triples-solution. html for a readable proof.

(9) If x_0 , y_0 , z_0 are integers satisfying

$$x^2 + y^2 + z^2 = 3xyz$$

then show that $x_1 = x_0$, $y_1 = y_0$ and $z_1 = 3x_0y_0 - z_0$ are also solutions. Describe in detail how this can be used to find infinitely many solutions in positive integers starting with $x_0 = y_0 = z_0 = 1$.

Solution 9. Let us first show that $x_1 = x_0$, $y_1 = y_0$ and $z_1 = 3x_0y_0 - z_0$ are solutions. For this:

$$\begin{aligned} x_1^2 + y_1^2 + z_1^2 &= x_o^2 + y_o^2 + (3x_oy_o - z_o)^2 \\ &= x_o^2 + y_o^2 + 9x_o^2 y_o^2 - 6x_o y_o z_o + z_o^2 \\ &= 3x_oy_oz_o + 9x_o^2 y_o^2 - 6x_o y_o z_o \\ &= 9x_o^2 y_o^2 - 3x_o y_o z_o \\ &= 3x_oy_o(3x_oy_o - z_0) \\ &= 3x_1y_1z_1. \end{aligned}$$

Note also that $x_0 = y_0 = z_0 = 1$ is a solution. However, a direct use of this this solution will not give rise to infinitely many solutions. But, replacing z_i by y_i and using the above formulae we get:

$$\begin{aligned} x_{o} &= y_{o} = z_{o} = 1 & \longrightarrow & x_{1}' = 1, y_{1}' = 1, z_{1}' = 3x_{o}y_{o} - z_{o} = 3 - 1 = 2 \longrightarrow x_{1} = 1, y_{1} = 2, z_{1} = 1 \\ & \longrightarrow & x_{2}' = 1, y_{2}' = 2z_{2}' = 3x_{1}y_{1} - z_{1} = 6 - 1 = 5 \longrightarrow x_{2} = 1, y_{2} = 5, z_{2} = 2 \\ & \longrightarrow & x_{3}' = 1, y_{3}' = 5z_{3}' = 3x_{2}y_{2} - z_{2} = 15 - 2 = 13 \longrightarrow x_{3} = 1, y_{3} = 13, z_{3} = 5 \\ & \longrightarrow & \dots \end{aligned}$$

(10) i. Given a binary quadratic form $f(x, y) = Ax^2 + Bxy + Cy^2$ with Δ is a perfect square describe all solutions of the equation

$$f(x,y) = p$$

assuming (A, B, C) = 1.

- ii. Explain what happens if $(A, B, C) \neq 1$.
- iii. Use your previous result to find all solutions of the equation

$$2x^2 + 5xy + 2y^2 = 5$$

Solution 10. i. If Δ is a perfect square then f(x, y) can be written as a product of two linear factors having integer *coefficients:*

$$(\alpha x + \beta y)(\gamma x + \delta y).$$

Since we are interested in integer solutions, it is enough to solve the following two system of linear Diophantine equations:

$$\alpha x + \beta y = \pm 1$$
 and $\gamma x + \delta y = \pm p$
 $x x + \beta y = \pm p$ and $\gamma x + \delta y = \pm 1$.

The two systems are symmetric, so we'll focus on the first one. In order $\gamma x + \delta y = \pm p$ to have solution $(\gamma, \delta) = 1$ or p. However if $(\gamma, \delta) = p$ we have $p|A = \alpha \gamma$, $p|B = \alpha \delta + \beta \gamma$ and $p|C = \beta \delta$, but we assumed that the greatest common divisor of A, B and C is 1, contradiction. So, we must have both $(\alpha, \beta) = 1$ and $(\gamma, \delta) = 1$. Otherwise there are no solutions. The solution set is then the common solutions of the first system union the solutions of the second system.

- ii. If the greatest common divisor of A, B and C is not 1, or p then the equation does not have any solution!
- iii. The greatest common divisor of 2 and 5 is 1. And $\Delta = B^2 4AC = 9 = 3^2$ so we will solve

$$2x^{2} + 5xy + 2y^{2} = (2x + y)(x + 2y) = 5$$

We have to solve four equation systems. The first one is

$$2x + y = 1$$
 and $x + 2y = 5$.

A solution to the first one is x = 1, y = -1, so all solutions can be written as x = 1 + t 1 and y = -1 - t 2. All solutions to the equation

$$x + 2y = 5$$

are given as x = 1 + 2 s and y = 2 - s. We must have

$$1 + t = 1 + 2 s and - 1 - 2t = 2 - s \iff t = 2s and s - 2t = 3$$
$$\Leftrightarrow s = -1 and t = -2.$$

All the remaining cases:

$$2x + y = -1$$
 and $x + 2y = -5$
 $2x + y = 5$ and $x + 2y = 1$
 $2x + y = -5$ and $x + 2y = -1$

are solved in a similar fashion.