MATH 371 HOMEWORK SET 1 DUE 17.10.2012, WEDNESDAY

Remember: x, y, z, etc. a, b, etc. , A, B, etc. stand for integers! p stand ALWAYS for a prime number (1) Show that

$$2^{32} + 1 \equiv 0 \pmod{641}$$

(<u>Hint:</u> Eliminate y from the equation $x^4 + y^4 = x^7y + 1$ and use $2^4 + 5^4 = 2^75 + 1$) (2) Prove that if $2^k - 1$ is a prime number, then

$$2^{k-1}(2^k-1)$$

is a perfect number.(Remember: A number n is called perfect if $\sigma(n) - n = n$.)

(3) Prove that if f(n) is multiplicative then

$$g(n) = \sum_{d|n} f(d)$$

is also multiplicative.

- (4) Euler's totient or phi function, $\varphi(n)$ is a function that counts the number of positive integers less than or equal to n that are relatively prime to n. For example, $\varphi(6) = 1$ as there is only 5 which is both smaller than 6 and relatively prime to 6.
 - i. Compute $\varphi(p)$.
 - ii. Show that φ is multiplicative.(Recall that a function f is multiplicative if f(m)f(n) = f(mn) whenever (m, n) = 1. <u>Hint:</u> You will need Chinese Remainder Theorem!)
 - iii. Find a formula for $\varphi(p^k)$.
- (5) Find x and y satisfying

$$54x + 17y = 136$$

(6) If exists, find all solutions of

$$39x + 47y = 4151$$

in positive integers.

(7) Show that if there are integer solutions to the equation

ax + by + cz = d

then the greatest common divisor of a, b and c divides d

- (8) Prove Theorem 5 in your notes.
- (9) If x_0 , y_0 , z_0 are integers satisfying

$$x^2 + y^2 + z^2 = 3xyz$$

then show that $x_1 = x_0$, $y_1 = y_0$ and $z_1 = 3x_0y_0 - z_0$ are also solutions. Describe in detail how this can be used to find infinitely many solutions in positive integers starting with $x_0 = y_0 = z_0 = 1$.

(10) i. Given a binary quadratic form $f(x, y) = Ax^2 + Bxy + Cy^2$ with Δ is a perfect square describe all solutions of the equation

$$f(x,y) = p.$$

assuming (A, B, C) = 1.

ii. Explain what happens if $(A, B, C) \neq 1$.

iii. Use your previous result to find all solutions of the equation

$$2x^2 + 5xy + 2y^2 = 5$$

<u>Notes:</u> You may write your solutions in the language you find appropriate.