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HOMEWORK SET 2
DUE 07.11.2012, WEDNESDAY

Remember: x, y, z, etc. a, b, etc., A, B, etc. stand for integers! p stand ALWAYS for a prime number; Z denotes the
set of integers.

(1) Find all solutions of the Diophantine equation

x2 + y2 = 100049.

(Hint: 100049 is a prime number!)

Solution 1. The prime 100049 is congruent to 1modulo 4. Hence we know that the given equation has a solu-
tion(for reference see http://en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of_two_squares). This
question is supposed to be solved by the help of computer. The following sample PARI/GP1 code will rule
you out the two integer solutions x = 215 and y = 232:

for (i = 1, 316, print((100049 - i ˆ 2) ˆ (1/2)););
All the solutions will be possible + and/or − combinations of these two numbers.

(2) Find all solutions of the Diophantine equation

3x2 + 7y2 = 75.

Solution 2. Note that the discriminant, ∆(f), of the form f = (3, 0, 7) is −4 · 3 · 7. By the inequalities

x2 ≤ 4 · 7 · 75
∆(f)

and y2 ≤ 4 · 3 · 75
∆(f)

,

we get x ≤ 5 and y ≤ 3. The following table gives all positive solutions:
x y

5 0
2 3

(3) Prove that x2 − 11y2 = 7 has no solutions.

Solution 3. Say xo and yo are a solution to the above equation. Then reducing the equation modulo 11, we
get

x2 ≡ 7mod 11.
But a square in Z/11Z has to be in the set {1, 4, 9, 5, 3}, contradiction.

(4) Prove that x2 − 5y2 = 1 has infinitely many solutions.

Solution 4. First observe that x = 9 and y = 4 are solutions to the given equation. To produce infinitely many

solutions, we find a matrix U =

(
p q
r s

)
by solving the system of equations given by the product:

Ut

(
1 0
0 −5

)
U =

(
1 0
0 −5

)
.

Hence U ∈ Aut(f). One sees that U =

(
9 20
4 9

)
. Then the product

(
9 20
4 9

)s

(9 4)t is also a solution;

where s ∈ Z. As we have observed in class, the matrix U, having trace larger than 2 has infinite order.

(5) Let G be a group acting on itself by conjugation (Check your notes for a definition). Describe the orbits of this
action if G is abelian.

Solution 5. Recall that conjugation action is defined as (g,ω) 7→ g ·ω := g−1ωg. When G is abelian

g ·ω = g−1ωg = ωg−1g = ω.

So any g ∈ G acts trivially. Hence the orbits of this action are singletons, i.e. G · g = {g}.

1Please visit http://pari.math.u-bordeaux.fr/ to get more information and download PARI.
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(6) Let G be any group and consider the action of G on itself (i.e. Ω = G in our notation). Define maps G×Ω −→
Ω = G

a. g ·L ω) := gω, and
b. g ·R ω) := ωg.
i. Show that both maps are in fact actions ofG onto itself (a. is called left action, and b. is called right action).

ii. Compare right action and left action when G is abelian?

Solution 6.
i. We’ll only show for left action. The proof of right action is similar. There are two conditions to check:

(a) Let 1G ∈ G denote the identity of G. Then for any g ∈ G, 1G ·L g = 1Gg = g.
(b) Let g1, g2 ∈ G be two arbitrary elements. For any g ∈ Gwe have:

(g1g2) ·L g = (g1g2)g

= g1(g2g)

= g1(g2 ·L g)
= g1 ·L (g2 ·L g).

ii. Let g ∈ G andω ∈ Ω = G be arbitrary. When G is abelian we have:

g ·L ω = gω = ωg = g ·R ω.

Hence the two actions are same when G is abelian.

(7) Let G be any group and let Aut(G) denote the group of automorphisms of G, that is

Aut(G) := {ϕ : G −→ G |ϕ is an isomorphism}.

i. Show that the map · : Aut(G)×G −→ G sending (ϕ, g) to ϕ · g := ϕ(g) defines an action of Aut(G) onto
G.

ii. For every g ∈ G show that the homomorphism ϕgo
: G −→ G sending g to ϕgo

(g) := (g−1
o )ggo is an

automorphism of G.
iii. Show that the map ι : G −→ Aut(G) sending each go ∈ G to the isomorphism ϕgo

is an injective group
homomorphism(i.e. a monomorphism.) has kernel Z(G), the center of G.

iv. Show that the image ι(G) of G in Aut(G) is a normal subgroup of Aut(G).

Solution 7. i. There are two conditions to check:
(a) Let id ∈ Aut(G) denote the identity automorphism of G. Then for any g ∈ G, id(g) = g.
(b) Let ϕ1, ϕ2 ∈ Aut(G) be two arbitrary automorphisms. Then:

(ϕ1 ◦ϕ2) · g = (ϕ1 ◦ϕ2)(g)

= ϕ1(ϕ2(g))

= ϕ1(ϕ2 · g)
= ϕ1 · (ϕ2 · g).

ii. We need to show that ϕgo
is

1. a homomorphism: For any given g1, g2 ∈ Gwe have

ϕgo
(g1g2) = g

−1
o )(g1g2)go = (g−1

o )g1go)(g
−1
o g2go) = ϕgo

(g1)ϕgo
(g2).

2. injective(1− 1): Let 1G denote the identity in G. Then the kernel of this morphism is:

ker(ϕgo
) = {g ∈ G |ϕgo

(g) = 1G}

= {g ∈ G |g−1
o ggo = 1G}

= {g ∈ G | (g−1
o ggo)g

−1
o = 1Gg

−1
o }

= {g ∈ G |g−1
o g = g−1

o }

= {g ∈ G |go(g
−1
o g) = gog

−1
o }

= {g ∈ G |g = 1G}

= {1G}.

3. surjective: Let g ∈ G be arbitrary. Then the element gogg−1
o is mapped by ϕgo

onto g. Namely

ϕgo
(gogg

−1
o ) = g−1

o (gogg
−1
o )go = g.
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iii. Let us now compute once again the kernel:

ker(ι) = {g0 ∈ G |ϕgo
= id}

= {g0 ∈ G |ϕgo
(g) = id(g) = g∀g ∈ G}

= {g0 ∈ G |g−1
o ggo = g∀g ∈ G}

= {g0 ∈ G |go(g
−1
o ggo) = gog∀g ∈ G}

= {g0 ∈ G |ggo = gog∀g ∈ G}
= Z(G).

iv. Let ϕ ∈ Aut(G) and ϕgo
∈ ι(G) be arbitrary. Then, for any g ∈ G:

(ϕ−1 ◦ϕgo
◦ϕ)(g) = ϕ−1 ◦ϕgo

(ϕ (g))

= ϕ−1 ◦ (ϕgo
(ϕ (g)))

= ϕ−1
(
g−1
o ϕ (g)go

)
= ϕ−1

(
g−1
o

)
ϕ−1 (ϕ (g))ϕ−1 (go)

=
[
ϕ−1 (go)

]−1
gϕ−1 (go)

= ϕϕ−1(go) (g) .

Hence ϕ−1 ◦ϕgo
◦ϕ ∈ ι(G).


