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HOMEWORK SET 4
DUE 12.12.2012, WEDNESDAY

Remember: a, b, etc. stand for integers! p stand ALWAYS for a prime number. O√
∆ stands for the ring of integers

of the quadratic number field Q(
√
∆). α, β etc. stand for elements of O√

∆.

(1) Show that the intersection of two distinct quadratic number fields, Q(
√
∆) and Q(

√
∆ ′) is Q.

Solution 1. Recall that ∆ and ∆ ′ have to be square-free integers. Suppose that α ∈ (Q(
√
∆) ∪Q(

√
∆ ′)) \ Q.

Then α ∈ Q(
√
∆) implies that there are rationals a, b ∈ Q so that α = a+b

√
∆ and similarly there are rationals

c, d ∈ Q so that α = c+ d
√
∆ ′. Then we have

a+ b
√
∆ = c+ d

√
∆⇔ a− c+ b

√
∆− d

√
∆ ′ = 0.

As a− c is a rational number as well as 0, the difference b
√
∆− d

√
∆ ′ must be a rational number, hence must

be equal to 0, i.e. b
√
∆ = d

√
∆ ′. d = 0 forces b to be 0 in which case we are done. So suppose d 6= 0. Then we

have b
d

=
√
∆ ′√
∆

. But b/d is a rational number, hence we must have
√
∆ ′/
√
∆ ∈ Q. This says

√
∆ ′√
∆

= f
√
δ ′

e
√
δ

for
some rational integers e, f. This says that e2|∆ and f2|∆ ′, contradiction.

(2) For α ∈ Q(
√
∆), we define the norm of α to be the rational number

α · α.

Show that
i. N(α) = 0⇔ α = 0.

ii. N(αβ) = N(α)N(β).
iii. If α ∈ O√

∆ theN(α) ∈ Z. However, show the converse to this statement is false by giving three examples
of non-integers whose norm is rational integer, i.e. find three elements in the set Q(

√
∆) \ O√

∆ whose
norms are integers.

Solution 2. i. Say N(α) = 0. Write α = a + b
√
∆. Then N(α) = αα = a2 − ∆b2. Assume, to the contrary,

that ao and bo be a non-zero solution to the equation a2 − ∆b2 = 0 ⇔ a2o = ∆b2o. This implies that ∆ is
not square-free; contradiction. Conversely, of α = 0 then N(α) = 00 = 0

ii. N(αβ) = αβαβ = αβαβ = (αα)(ββ) = N(α)N(β).
iii. There are two cases. If ∆ is not congruent to 1 (mod 4) then elements ofO√

∆ are of the form α = a+b
√
∆

with a, b ∈ Z. Hence N(α) = a2 − ∆b2 ∈ Z. If ∆ ≡ 1 (4) then integers of Q(
√
∆) are of the form

α = a
2
+ b
2

√
∆ with a, b ∈ Z and a ≡ b (2). N(α) = 1

4
(a2 − ∆b2). Hence it is enough to show that

a2 − ∆b2 ≡ a2 − b2 ≡ 0 (4). If a and b are even, we are done. If both are odd, then a, b are congruent to
1 (mod 4).

(3) Show that each of the following numbers are primes in Q(
√
−5):

i. 3+ 2
√
−5,

ii. 37,
iii. 1+ 2

√
−5.

Solution 3. i. N(3+ 2
√
−5) = (3+ 2

√
−5)(3− 2

√
−5) = 9+ 5 · 4 = 29 is a prime, hence 3+ 2

√
−5must be a

prime by Theorem 19 of our notes.
ii. Assume that there are integers α,β ∈ O√

∆ with 37 = αβ. ThenN(37) = 37 · 37 = N(αβ) = N(α)N(β). As
37 is a prime, we must have N(α) = 37 = N(β). Now, write α = a + b

√
−5. Then N(α) = a2 + 5b2 = 37.

But this equation has no solution in rational integers. So there are no elements of O√
∆ having norm 37.

Hence 37 is a prime in
√
−5.

iii. N(1 + 2
√
−5) = (1 + 2

√
−5)(1 − 2

√
−5) = 21 = 3 · 7. Thus, if 1 + 2

√
−5 is not a prime, then there should

exist two integers α and β of norm 3 and 7. However, there are no integers in Q(
√
−5) of norm 3 because

there are no solutions to the equation a2 + 5b2 = 3. Hence 1+
√
−5 is a prime.
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(4) Show that 2 and 3 are not primes in Q(
√
6). (In fact, they both can be written as a product of two associate

primes.)

Solution 4. 6 ≡ 2 (4), hence integers in Q(
√
6) are of the form α = a+b

√
6 for a, b ∈ Z. AndN(α) = a2−6b2.

We can write 3 as (3+
√
6)(3−

√
6) with both being primes as they have norm 3; hence 3 is not a prime. As for

factoring 2, although there are no integers of norm 2 there are integers of norm −2, the reason being that the
Diophantine equation x2 − 6y2 = 2 has no solutions(can you prove this?) whereas x2 − 6y2 = −2 does have
infinitely many solutions! We can write 2 = (−1)(2+

√
6)(2−

√
6). As both 2+

√
6, 2−

√
6 have prime norms,

they are primes in O√
6.

(5) Show that there is no integer in Q(
√
7) of norm 3 but that 3 is not a prime in Q(

√
7).(We have seen in class that

2 is a prime in Q(
√
−47) because there are no elements in O√

∆ with norm 2.)

Solution 5. Once again 7 ≡ 3 (4) integers are of the form a + b
√
7. Let α = a + b

√
7 be one. Then N(α) =

a2 − 7b2. The equation x2 − 7y2 = 3 has no solution in Z, because if it had one solution then we would have:

3 ≡ x2 − 7y2 = x2 (7).

Here is a list of squares modulo 7: 0, 1, 4, 2, 2, 4, 1. In other words, the equation x2 ≡ 3 (7) have no solution,
hence the given equation cannot have any integers solutions. Therefore, O√

7 does not contain any element of
norm 3. However, the elements 2+

√
7 and 2−

√
7 does have norm −3 hence they are primes, and the product

(−1)(2+
√
7)(2−

√
7) = 3, i.e. 3 is not a prime in O√

7.

(6) Suppose that ε is a unit in Q(
√
∆) and

√
ε is an integer(i.e. an element of O√

∆). Show that
√
ε is a unit.

Solution 6. ε is a unit implies that N(ε) = ±1. As
√
ε is an integer, N(ε) = N(

√
ε ·
√
ε) = N(

√
ε)2 = 1, i.e.

(N(
√
ε))2 = 1, hence N(

√
ε) = ±1, i.e.

√
ε is a unit, by Theorem 16 of our notes.

(7) Prove that O√
∆ is not a UFD for ∆ =:

i. −17 (Hint: Try to factor 18 to see that the number of factors in two decompositions may be different.)
ii. −26 (Hint: Try to factor 27 to see that the number of distinct primes appearing in two decompositions

may be different.)

Solution 7. i. 18 = 2 ·3 ·3 = (1+
√
−17)(1−

√
−17). We have to show that each factor is a prime. 2 and 3 are

primes because there are no integers of norm ±2 and ±3 in Q(
√
−17). Indeed, N(α) = N(a + b

√
−17) =

a2+17b2, and the two Diophantine equations x2+17y2 = ±2 and x2+17y2 = ±3 have no solution. Since
N(1+

√
−17) = 18 = 2 · 3 · 3 and there are no integers of norm 2 or 3 inO√

−17, we conclude that 1+
√
−17

is a prime. Similar argument works for 1 −
√
−17. And in fact, we see that O√

−17 is NOT a UFD, and in
fact, the number of prime factors in decompositions may be different!

ii. 27 = 3 · 3 · 3 = (1 +
√
−26)(1 −

√
−26). 3 is a prime simply because there are no integers of norm ±3 in

O√
−26 and 1±

√
−26 is prime by more or less the same arguments made in part i.. Hence O√

−26 is NOT
a UFD. We also observe that there are cases where the number of distinct factors in a prime factorization
may differ in non-UFDs.

(8) Show that 2 and 3 are primes in Q(
√
10). (Hint: Try to compute their norms. Then reduce modulo 10.)

Solution 8. Suppose 2 is not a prime and write 2 = αβ. We must haveN(α) = N(a+ b
√
10) = a2 − 10b2 = 2.

Then modulo 10 we have a2 = 2 (10). Similarly, suppose 3 is not a prime and write 3 = α ′β ′. We must have
N(α ′) = N(a ′ + b ′

√
10) = a ′2 − 10b ′2 = 3. Then modulo 10 we have a2 = 3 (10). Here is a list of squares

modulo 10: 0, 1, 4, 9, 6, 5, 6, 9, 4, 1; contradiction!

Notes: You may write your solutions in the language you find appropriate.


