MATH 371 HOMEWORK SET 4 DUE 12.12.2012, WEDNESDAY

Remember: a, b, etc. stand for integers! p stand ALWAYS for a prime number. \mathcal{O}_{Δ} stands for the ring of integers of the quadratic number field $\mathbf{Q}(\sqrt{\Delta})$. α , β etc. stand for elements of \mathcal{O}_{Δ} .

- (1) Show that the intersection of two distinct quadratic number fields, $\mathbf{Q}(\sqrt{\Delta})$ and $\mathbf{Q}(\sqrt{\Delta'})$ is \mathbf{Q} .
- (2) For $\alpha \in \mathbf{Q}(\sqrt{\Delta})$, we define the *norm* of α to be the rational number

 $\alpha \cdot \overline{\alpha}$.

Show that

- i. $N(\alpha) = 0 \Leftrightarrow \alpha = 0$.
- ii. $N(\alpha\beta) = N(\alpha)N(\beta)$.
- iii. If $\alpha \in \mathcal{O}_{\Delta}$ the $N(\alpha) \in \mathbb{Z}$. However, show the converse to this statement is false by giving three examples of non-integers whose norm is rational integer, i.e. find three elements in the set $\mathbb{Q}(\sqrt{\Delta}) \setminus \mathcal{O}_{\Delta}$ whose norms are integers.
- (3) Show that each of the following numbers are primes in $\mathbf{Q}(\sqrt{-5})$:
 - i. $3 + 2\sqrt{-5}$,
 - ii. 37,
 - iii. $1 + 2\sqrt{-5}$.
- (4) Show that 2 and 3 are not primes in $\mathbf{Q}(\sqrt{6})$. (In fact, they both can be written as a product of two associate primes.)
- (5) Show that there is no integer in $\mathbf{Q}(\sqrt{7})$ of norm 3 but that 3 is not a prime in $\mathbf{Q}(\sqrt{7})$.(We have seen in class that 2 is a prime in $\mathbf{Q}(\sqrt{-47})$ because there are no elements in \mathcal{O}_{Δ} with norm 2.)
- (6) Suppose that ε is a unit in $\mathbf{Q}(\sqrt{\Delta})$ and $\sqrt{\varepsilon}$ is an integer (i.e. an element of \mathcal{O}_{Δ}). Show that $\sqrt{\varepsilon}$ is a unit.
- (7) Prove that \mathcal{O}_{Δ} is not a UFD for $\Delta =:$
 - i. -17 (<u>Hint</u>: Try to factor 18 to see that the number of factors in two decompositions may be different.)
 - ii. -26 (<u>Hint:</u> Try to factor 27 to see that the number of distinct primes appearing in two decompositions may be different.)

(8) Show that 2 and 3 are primes in $\mathbf{Q}(\sqrt{10})$. (<u>Hint:</u> Try to compute their norms. Then reduce modulo 10.) <u>Notes:</u> You may write your solutions in the language you find appropriate.