MATH 468 EXERCISE SET 1

A. ZEYTİN

(1) The aim of this exercise is to get you familiar with the field of fractions of an integral domain, R. Define the set

$$\mathbf{Q}_{\mathbf{o}}(\mathbf{R}) := \{(a,b) | a, b \in \mathbf{R}, b \neq 0\}.$$

Define two elements (a, b) and (a', b') to be equivalent and write $(a, b) \sim (a', b')$, if ab' - a'b = 0. i. Show that ~ is an equivalence relation, i.e. it is reflexive, symmetric and transitive.

Let Q(R) be the set of equivalence classes under this equivalence relation. Denote the class of a pair (a, b) by [a, b]. Define the following two operations of Q(R):

[a, b] + [c, d] = [ad + bc, bd] and $[a, b] \cdot [c, d] = [ac, bd]$.

- ii. Show that addition and multiplication are well defined, i.e. they are independent of the chosen representative.
- iii. Show that with the above operations Q(R) becomes a field.
- iv. Prove that the map

 $\iota: R \longrightarrow Q(R)$

defined as $\iota(r) = [r, 1]$ is an injective ring homomorphism(or a monomorphism). Note: If you feel uncomfortable with general fields, try to imagine what's going on in case R = Z. What is $Q(\mathbf{Z})?$

(2) Let $Z[\sqrt{-1}] := \{a + b\sqrt{-1} \in C \mid a, b \in Z\}.$

i. Show that $\mathbb{Z}[\sqrt{-1}]$ is an integral domain.

ii. Repeat Exercise 1 for $\mathbb{Z}[\sqrt{-1}]$. What is $\mathbb{Q}(\mathbb{Z}[\sqrt{-1}])$?

- (3) Let k be a field. Prove that if $f(X) \in k[x]$ is a polynomial of degree 2 or 3 then f(x) is irreducible in k[x] if and only if f(x) has no root in k.
- (4) Find the **monic**, single generator of the following ideals:

i. $I = (x^2 - 7, x^2 + 7)$ in Q[x]ii. $I = (x^6 - 8, x^2 - 2)$ in Q[x]

iii. $I = (x^3 + 4x^2 + x - 6, x^5 - 6x + 5)$ in Q[x]

Hint: Modify the Euclidean algorithm to the case of polynomials.

Note: In case you need, look up the definition of an ideal generated by two elements.

- (5) Prove that (x) and (x, y) are both prime ideals in $\mathbf{Q}[x, y]$, i.e. polynomials in two variable, x and y. Show also that only the ideal (x, y) is maximal. Hint: Consider the quotient rings!
- (6) For a prime number p define $\Phi_p(x) = \frac{x^p 1}{x 1} = 1 + x + x^2 + \dots + x^{p-1}$. This polynomial is called the pth cyclotomic polynomial. Show that $\Phi_{p}(x) \in \mathbf{Q}[x]$ is irreducible using the Eisenstein criterion. <u>Hint</u>: A change of variable $x \mapsto x + 1$ might help.
- (7) Determine whether the following polynomials are irreducible over the given polynomial rings:
 - i. $x^2 + x + 1$ over $\mathbb{F}_2[x]$ ii. $x^3 + x + 1$ over $\mathbb{F}_3[x]$ iii. $x^4 + 1$ over $\mathbb{F}_5[x]$

 - iv. $\frac{(x+2)^p 2^p}{x}$ over $\mathbf{Q}[x]$; where p is an odd prime. v. $x^4 + 4x^3 + 6x^2 + 2x + 1$ over $\mathbf{Q}[x]$ <u>Hint:</u> In this case, use $x \mapsto x 1$
- (8) Construct a field with 27 elements.

<u>Hint</u>: Try to find an irreducible polynomial of degree 3 over \mathbb{F}_3 .

- (9) Construct a field with 25 elements.
- (10) Find the minimal polynomial of $\alpha = \sqrt[6]{2}$ over **Q**. What is the minimal polynomial of α over **Q**($\sqrt{2}$)?
- (11) Let p and q be two **distinct** prime numbers.
 - i. What is the minimal polynomial of \sqrt{p} over **Q**?
 - ii. What is the minimal polynomial of \sqrt{q} over $\mathbf{Q}(p)$?
 - iii. What is the degree of the extension $\mathbf{Q}(\sqrt{p},\sqrt{q})/\mathbf{Q}$?
 - iv. Find a basis for the vector space $\mathbf{Q}(\sqrt{p},\sqrt{q})$ over \mathbf{Q} .