MATH 468
 EXERCISE SET 2

A. ZEYTIN

(1) Let $\alpha_{1}, \cdots, \alpha_{n}$ be distinct integers and consider the polynomial

$$
f(X)=\left(\prod_{i=1}^{n}\left(X-\alpha_{i}\right)\right)-1 \in \mathbf{Q}[X]
$$

Show that f is irreducible.
Hint: Assume first that f can be written as a product of two polynomials: $f(X)=g(X) h(X)$, where g and h are monic polynomials of degree $<n$. Compute $g\left(\alpha_{i}\right)+h\left(\alpha_{i}\right)$ for each $i=1 \cdots, n$.
(2) Prove that $\mathbf{Q}(\sqrt{12})=\mathbf{Q}(\sqrt{3})$. More generally, let p and q be two distinct integers and consider the fields $K_{1}=\mathbf{Q}(\sqrt{p})$ and $K_{2}=\mathbf{Q}(\sqrt{q})$. Show that $K_{1}=K_{2}$ if and only if $p q$ is the square of an integer.
(3) Let $K=\mathbf{Q}(\alpha)$ where α satisfies the equation: $\alpha^{3}-\alpha^{2}+\alpha+2=0$. Express the elements $\left(\alpha^{2}+\alpha+1\right)(\alpha-1) \alpha$ and $(\alpha-1)-1$ in terms of the basis $\left\{1, \alpha, \alpha^{2}\right\}$ of $\mathbf{Q}(\alpha)$ over \mathbf{Q}.
(4) Using the polynomial $f(X)=X^{3}-X+1$ construct a field, K, with 8 elements. Show that group ($\left.K \backslash\{0\}, \cdot\right)$ is a cyclic group, i.e. it is generated by one element.
(5) Prove that $\mathbf{Q}(\sqrt{2}+\sqrt{3})$ is equal to $\mathbf{Q}(\sqrt{2}, \sqrt{3})$, and deduce that $[\mathbf{Q}(\sqrt{2}+\sqrt{3}): \mathbf{Q}]=4$. Find the minimal polynomial $f_{\alpha}(X) \in \mathbf{Q}[X]$ of $\alpha=\sqrt{2}+\sqrt{3}$.
(6) Suppose that K / k is a field extension of prime degree, i.e. $[K: k]=p$ for some prime number p. Show that any proper subextension K^{\prime} of K containing k is k .
(7) Let $\left\{p_{1}, \cdots, p_{n}\right\}$ be a non-empty set of distinct prime numbers and consider the field $K=\mathbf{Q}\left(\sqrt{p_{1}}, \cdots, \sqrt{p_{n}}\right)$. Show that $\sqrt[3]{p_{i}} \notin K$ for $i=1, \cdots, n$.
(8) Let K / k be a field extension and $\alpha \in K$ such that $[k(\alpha): k]=2 d+1$ for some $d \geq 1$. Show that $k(\alpha)=k\left(\alpha^{2}\right)$.
(9) Consider the field extension $\mathbf{Q}(\sqrt{-2}, \sqrt{2}) / \mathbf{Q}$. Show that this extension has degree 4 . This extension contains a subextension, L, i.e. $\mathbf{Q}(\sqrt{-2}, \sqrt{2})$ has a subfield L, other than $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q} \sqrt{-2}$, such that $[L: \mathbf{Q}]=2$. Which field is this?
(10) Let K / k be a field and let R be a ring containing k. Show that R is a field.
(11) Determine the splitting field of the polynomial $f(X)=X^{4}+2 \in \mathbf{Q}[X]$.
(12) Find the splitting field of $X^{4}-4$ over $\mathbf{Q}(\sqrt{2})$.
(13) Determine the splitting field of the polynomial $f(X)=X^{4}+X^{2}+1 \in Q[X]$.
(14) Let $f(X)=X^{4}+a X^{2}+b \in \mathbf{Q}[X]$ be an irreducible polynomial. And let K_{f} be the splitting field of f. Show that $\left[K_{f}: Q\right]$ is either 8 or 4 . Give examples of each case.

