MATH 468 EXERCISE SET 3

A. ZEYTİN

(1) Prove that the formal derivative D_X of a polynomial satisfies:

- i. $D_X(f(X) + g(X)) = D_X(f(X)) + D_X(g(X)),$
- ii. $D_X(f(X)g(X)) = D_X(f(X))g(X) + f(X)D_X(g(X)).$
- iii. Deduce that $D_X: k[X] \longrightarrow k[X]$ is a group homomorphism of (k[X], +). Why it is not a ring homomorphism of $(k[X], +, \cdot)$?
- iv. Find the kernel of D_X if characteristic of k is 0.
- v. Find the kernel of D_X if characteristic of k is p > 0.
- (2) How many polynomials are there of degree 4 in $\mathbb{F}_2[X]$? How many of them are irreducible? How many of them are separable? Prove that the product of all irreducible polynomials in $\mathbb{F}_2[X]$ of degree 1, 2 and 4 is $X^{16} X$.
- (3) For any prime p and any non-zero element $a \in \mathbb{F}_p$, the polynomial $X^p X + a$ is irreducible and separable. (<u>Hint:</u> Prove that if α is a root then so is $\alpha + 1$.)
- (4) i. Prove that

$$x^{p^n-1}-1=\prod_{\alpha\in(\mathbb{F}_n\mathfrak{n}\setminus\{0\})}(x-\alpha).$$

- ii. Deduce that $\prod_{\alpha \in (\mathbb{F}_{p^n} \setminus \{0\})} (\alpha) = (-1)^{p^n}$.
- iii. For p odd and n = 1 deduce *Wilson's theorem*: $(p 1)! = -1 \pmod{p}$
- (5) Prove that for any $f(X) \in \mathbb{F}_p[X]$ we have

 $(f(X))^p = f(X^p).$

- (6) A field k is called *perfect* if every extension of k is a separable extension.i. Show that every field of characteristic 0 is perfect.
 - ii. Show that every finite field is perfect.
- (7) Give an example of an f(X) ∈ Q[X] that has no zeroes in Q but whose zeroes in C are all of multiplicity 3. Does this contradict the fact that Q is perfect? Why?
- (8) Let $K = k(\alpha_1, \dots, \alpha_n)$ be a finite algebraic extension of k. Show that any element $\sigma \in Aut(K/k)$ is uniquely determined by its action on the generators $\alpha_1, \dots, \alpha_n$, i.e. by $\sigma(\alpha_1), \dots, \sigma(\alpha_n)$.
- (9) Let G be a subgroup of Aut(L/k) and σ₁, · · · , σ_k be generators of the group G. Show that a subfield K is fixed by G if and only if it is fixed by the generators σ₁, · · · , σ_k.
- (10) For any complex number z = a + b√-1, we define its complex conjugate to be the number z̄ := a b√-1.
 i. Show that complex conjugation is an automorphism of C.
 - ii. Determine the subfield of C fixed by complex conjugation.
- (11) Find Aut($\mathbf{Q}(\sqrt[4]{2})/\mathbf{Q}(\sqrt{2})$).
- (12) Let k be a field and consider the field of rational functions in the variable x, i.e. consider the field k(x).
 i. Show that the map x → x + 1 extends to an automorphism of k(x).
 ii. Find the subfield of k(x) fixed by this automorphism.
- (13) Let $f(X) \in \mathbb{F}_2[X]$ and let α be a root of f. Show that f(X) splits in $\mathbb{F}_2(\alpha)$.
- (14) Find the Galois group of the polynomial $f(X) = X^5 2 \in \mathbf{Q}[X]$.
- (15) Find the Galois group of the polynomial $f(X) = X^p 2 \in \mathbf{Q}[X]$; where p is a prime number.
- (16) Find the Galois group of the polynomial $f(X) = X^8 3 \in \mathbf{Q}[X]$.

- (17) Recall that two elements $\alpha, \beta \in K$ are said to be conjugate over k if there is an element $\sigma \in Aut(K/k)$ so that $\sigma(\alpha) = \beta$. Find all conjugates of given elements in the indicated fields:
 - i. \sqrt{p} and $3 + \sqrt{p} \in \mathbf{Q}(\sqrt{p})$; where p is a prime number.
 - ii. $\sqrt{2} + \sqrt{3}, \sqrt{2} + \sqrt{5}$ and $\sqrt{3} + \sqrt{5}$ in $\mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbf{Q}$.
- (18) Prove that
 - i. an automorphism of a field K maps elements that are squares of elements in K to elements in K what are squares of elements in K, that is for any element $\alpha \in K$ with the property that $\alpha = \beta^2$ for some $\beta \in K$, there exists some $\beta' \in K$ so that $\sigma(\alpha) = (\beta')^2$; where $\sigma \in Aut(K/k)$ arbitrary.
 - ii. an automorphism of real numbers sends positive numbers to positive numbers.
 - iii. for $\sigma \in {\rm Aut}({\bf R}/{\bf Q})$ and for $a,b \in {\bf R}$ with a < b, $\sigma(a) < \sigma(b)$
 - iv. the group $Aut(\mathbf{R}/\mathbf{Q}) = \{1\}$, i.e. the trivial group.
- (19) Let $f(X) \in \mathbf{Q}[X]$ is a polynomial of degree 3. Prove that if the Galois group of this polynomial is isomorphic to $\mathbf{Z}/3\mathbf{Z}$ then all the roots of f(X) are real. Find such an f. What is the other possibility?
- (20) Let K/k be a field extension. Recall that two elements $\alpha, \beta \in K$ are said to be conjugate over k if there is an element $\sigma \in Aut(K/k)$ so that $\sigma(\alpha) = \beta$.
 - i. Prove that two elements are conjugate if and only if their minimal polynomials, $f_{\alpha}(X)$ and $f_{\beta}(X)$ in k[X], are the same.
 - ii. Let $d = \deg(f_{\alpha})$. Define

$$\begin{array}{ccc} \varphi_{\alpha,\beta}:k(\alpha) & \longrightarrow & k(\beta) \\ (a_0+a_1\alpha+\dots+a_{d-1}\alpha^{d-1}) & \mapsto & (a_0+a_1\beta+\dots+a_{d-1}\beta^{d-1}) \end{array}$$

Show that $\varphi_{\alpha,\beta}$ is a field homomorphism.

- iii. Show that the map $\varphi_{\alpha,\beta}$ is an isomorphism if and only if α and β are conjugate.
- iv. Let $f(X) \in \mathbf{R}[X]$ be any polynomial. Show that complex zeroes of f come in conjugate pairs, i.e. show that for $a, b \in \mathbf{R}$ if $f(a + b\sqrt{-1}) = 0$ then $f(a b\sqrt{-1}) = 0$, too.
- (21) Show that the extension $\mathbf{Q}(\sqrt[4]{2})/\mathbf{Q}$ is not Galois by showing that the Galois group is trivial.