MATH 468 EXERCISE SET 4

A. ZEYTİN

- Verify the Galois correspondence for the following extensions

 Q(√p, √q)/Q where p and q are distinct prime numbers.
 Q(√2, √3, √5)/Q
 Q(ζ₇)/Q.
- (2) For relatively prime m and n in $\mathbf{Z}_{>0}$ let ζ_1 be any primitive nth root of unity and ζ_2 be any primitive mth root of unity. Show that $\zeta_1 \zeta_2$ is a primitive mnth root of unity.
- (3) Let n be a postive odd integer. Prove that if a field contains a primitive n^{th} root of unity, then is also contains a primitive $(2n)^{th}$ root of unity, too!
- (4) Show that if K/k is a finite extension then K may contain at most finitely many roots of unity.
- (5) Let n > 1 be an odd integer and let Φ_n denote the n^{th} cyclotomic polynomial. Show that

$$\Phi_{2n}(\mathbf{X}) = \Phi_n(-\mathbf{X}).$$

(6) Prove that there are infinitely many prime numbers, p, with

 $p \equiv 1 \mod n$.

(<u>Hint:</u> Consider the group μ_n .)

Questions 7 - 9 are aimed at reminding you the structure of abelian groups. If you feel comfortable you may skip them.

- (7) Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$.
 - i. Show that $(1+p)^{p^{n-1}} \equiv 1 \mod p^n$ but $(1+p)^{p^{n-2}} \equiv 1 \mod p^n$
 - ii. Using (i.) conclude that (1 + p) is an element of order p^{n-1} in $(\mathbf{Z}/p^n\mathbf{Z})^{\times}$.
- (8) Let $n \in \mathbb{Z}_{>2}$.
 - i. Show that $(1+2^2)^{2^{n-2}} \equiv 1 \mod p^n$ but $(1+2^2)^{2^{n-3}} \equiv 1 \mod p^n$
 - ii. Using (i.) conclude that 5 is an element of order 2^{n-2} in $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ for any $n \ge 3$.
- (9) Show that $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ is not cyclic(i.e. generated by a single element) for any $n \ge 3$. (<u>Hint:</u> Find two distinct subgroups of order 2. Why is this enough?)
- (10) Recall that $\sigma_a : \mathbf{Q}(\zeta_n) \longrightarrow \mathbf{Q}(\zeta_n)$ is defined as $\sigma_a(\zeta_n) = (\zeta_n)^a$. Let ζ be any *primitive* nth root of unity. Show that $\sigma_a(\zeta) = \zeta$.
- (11) Let p be a prime number and $\zeta_1, \dots, \zeta_{p-1}$ denote primitive pth roots of unity. Define

$$\varepsilon_n = \zeta_1^n + \dots + \zeta_{p-1}^n$$

Prove that:

i. $\varepsilon_n = -1$ if $p \nmid n$ ii. $\varepsilon_n = p - 1$ if $p \mid n$

(<u>Hint:</u> Show that ε_n is a conjugate of ε_1 for p not dividing n. What is ε_1 ?)

- (12) Prove that $\mathbf{Q}(\sqrt[3]{2})$ is not a subfield of *any* cyclotomic field $\mathbf{Q}(\zeta_n)$ over \mathbf{Q} .
- (13) Let $K = Q(\zeta_n)$ and k = Q and consider the extension K/k.
 - i. Show that complex conjugation $\overline{\cdot}$: $\mathbf{C} \longrightarrow \mathbf{C}$ (Exercise Set 3, Problem 10) restricts to $\sigma_{-1} \in \text{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q})$; where σ_{-1} is defined as in Problem 10 of this exercise set.

ii. Show that the field $K^+ = \mathbf{Q}(\zeta_n + \zeta_n^{-1})$ is contained in $\mathbf{R} \cap K$, i.e. imaginary parts of elements of K^+ are 0! K^+ is called the maximal real subfield of K. Let now $n = 2^{n+2}$ and consider $K_n = \mathbf{Q}(\zeta_n)$ for $n \ge 0$ and $\alpha_n = \zeta_n + \zeta_n^{-1}$.

- iii. Show that for any $n \ge 0$
 - a. $[K_n : \mathbf{Q}] = 2^{n+1}$
 - b. $[K_n:K_n^+] = 2$
 - c. $[K_n^+ : \mathbf{Q}] = 2^n$
 - d. $[K_{n+1}^+:K_n^+] = 2$
- iv. Determine the equation satisfied by ζ_n over K_n^+ in terms of α_n
- v. Show that $\alpha_{n+1}^2 = 2 + \alpha$
- vi. Show that

$$\alpha_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}} (n \text{ times}).$$

- vii. Prove that K_n^+ is a cyclic extension (i.e. the automorphism group is cyclic) of \mathbf{Q} of degree 2^n . (Hint: Show that $(\mathbf{Z}/2^{n+2}\mathbf{Z})^{\times} \cong (\mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2^{n}\mathbf{Z}).)$
- (14) Determine explicitly the multiplication table for \mathbb{F}_8 and \mathbb{F}_9 .
- (15) Set $q = p^m$ and consider $\mathbb{F}_q = \mathbb{F}_{p^m}$. Define $\sigma_q \colon \mathbb{F}_q \longrightarrow \mathbb{F}_q$ as $\sigma_q(\alpha) = \alpha^q$. This exercise will prove the analogous results we prove in class for \mathbb{F}_p . Show that
 - i. σ_q fixes \mathbb{F}_q .
 - ii. every finite extension of \mathbb{F}_q of degree n is the splitting field of $X^{q^n} X$ over \mathbb{F}_q . Deduce that this extension is unique.
 - iii. every finite extension K of \mathbb{F}_q of degree n is cyclic with σ_q as a generator of the group $\operatorname{Gal}(K/\mathbb{F}_q)$.
 - iv. there is a one to one correspondence between subfield of the unique extension K of \mathbb{F}_q of degree n and divisors d of n.

(16) Prove that $n \mid \varphi(p^n - 1)$. (<u>Hint:</u> Show that $\varphi(p^n - 1) = \left| \left(\mathbf{Z}/(p^n - 1)\mathbf{Z} \right)^{\times} \right|$.)