
MATH 468
EXERCISE SET 4

A. ZEYTİN

(1) Verify the Galois correspondence for the following extensions
i. Q(

√
p,
√
q)/Q where p and q are distinct prime numbers.

ii. Q(
√
2,
√
3,
√
5)/Q

iii. Q(ζ7)/Q.

(2) For relatively prime m and n in Z>0 let ζ1 be any primitive nth root of unity and ζ2 be any primitive mth root
of unity. Show that ζ1ζ2 is a primitivemnth root of unity.

(3) Let n be a postive odd integer. Prove that if a field contains a primitive nth root of unity, then is also contains
a primitive (2n)th root of unity, too!

(4) Show that if K/k is a finite extension then Kmay contain at most finitely many roots of unity.

(5) Let n > 1 be an odd integer and let Φn denote the nth cyclotomic polynomial. Show that

Φ2n(X) = Φn(−X).

(6) Prove that there are infinitely many prime numbers, p, with

p ≡ 1mod n.

(Hint: Consider the group µn.)

Questions 7 - 9 are aimed at reminding you the structure of abelian groups. If you feel comfortable you may
skip them.

(7) Let p be an odd prime and let n ∈ Z>0.
i. Show that (1+ p)p

n−1 ≡ 1mod pn but (1+ p)p
n−2 ≡ 1mod pn

ii. Using (i.) conclude that (1+ p) is an element of order pn−1 in (Z/pnZ)×.

(8) Let n ∈ Z>2.
i. Show that (1+ 22)2

n−2 ≡ 1mod pn but (1+ 22)2
n−3 ≡ 1mod pn

ii. Using (i.) conclude that 5 is an element of order 2n−2 in (Z/2nZ)× for any n ≥ 3.

(9) Show that (Z/2nZ)× is not cyclic(i.e. generated by a single element) for any n ≥ 3.
(Hint: Find two distinct subgroups of order 2. Why is this enough?)

(10) Recall that σa : Q(ζn) −→ Q(ζn) is defined as σa(ζn) = (ζn)
a. Let ζ be any primitive nth root of unity. Show

that σa(ζ) = ζ.

(11) Let p be a prime number and ζ1, · · · , ζp−1 denote primitive pth roots of unity. Define

εn = ζn1 + · · ·+ ζnp−1.

Prove that:
i. εn = −1 if p - n

ii. εn = p− 1 if p | n
(Hint: Show that εn is a conjugate of ε1 for p not dividing n. What is ε1?)

(12) Prove that Q( 3
√
2) is not a subfield of any cyclotomic field Q(ζn) over Q.

(13) Let K = Q(ζn) and k = Q and consider the extension K/k.
i. Show that complex conjugation · : C −→ C(Exercise Set 3, Problem 10) restricts to σ−1 ∈ Gal(Q(ζn)/Q);

where σ−1 is defined as in Problem 10 of this exercise set.



ii. Show that the field K+ = Q(ζn + ζ−1
n ) is contained in R ∩ K, i.e. imaginary parts of elements of K+ are 0!

K+ is called the maximal real subfield of K.
Let now n = 2n+2 and consider Kn = Q(ζn) for n ≥ 0 and αn = ζn + ζ−1

n .
iii. Show that for any n ≥ 0

a. [Kn : Q] = 2n+1

b. [Kn : K+
n ] = 2

c. [K+
n : Q] = 2n

d. [K+
n+1 : K+

n ] = 2
iv. Determine the equation satisfied by ζn over K+

n in terms of αn

v. Show that α2
n+1 = 2+ α

vi. Show that

αn =

√
2+

√
2+ · · ·+

√
2 (n times).

vii. Prove that K+
n is a cyclic extension (i.e. the automorphism group is cyclic) of Q of degree 2n. (Hint: Show

that (Z/2n+2Z)× ∼= (Z/2Z⊕ Z/2nZ).)

(14) Determine explicitly the multiplication table for F8 and F9.

(15) Set q = pm and consider Fq = Fpm . Define σq : Fq −→ Fq as σq(α) = αq. This exercise will prove the
analogous results we prove in class for Fp. Show that

i. σq fixes Fq.
ii. every finite extension of Fq of degree n is the splitting field of Xqn

−X over Fq. Deduce that this extension
is unique.

iii. every finite extension K of Fq of degree n is cyclic with σq as a generator of the group Gal(K/Fq).
iv. there is a one to one correspondence between subfield of the unique extension K of Fq of degree n and

divisors d of n.

(16) Prove that n | ϕ(pn − 1). (Hint: Show that ϕ(pn − 1) =
∣∣∣(Z/(pn − 1)Z

)×∣∣∣.)


