MATH 371 ÉNONCÉS DES EXERCICES 5

A. ZEYTİN

- (1) Soit p un nombre premier. Montrez que $A = \mathbf{Z}/p^n\mathbf{Z}$ est un anneau local pour tout $n \in \mathbf{Z}_{\geq 1}$. Trouver l'idéal maximal de A.
- (2) Soit $C^0(\mathbf{R})$ l'ensemble des fonctions continues $f: \mathbf{R} \longrightarrow \mathbf{R}$, et soit = $\{f \in C^0(\mathbf{R}): f(1) \neq 0\}$.
 - Montrez que $C^0(\mathbf{R})$ est un anneau. Écrivez explicitement les identités par rapport à addition et multiplication.
 - Décider si $C^0(\mathbf{R})$ est un anneau intègre ou pas.
 - Montrez que S est multiplicatif.
 - Montrez que $S^{-1}C^{0}(\mathbf{R})$ est un anneau local.
- (3) Soient A un anneau intègre, f, $g \in A$ et $S_f = \{1, f, f^2, \ldots\}$ et $S_g = \{1, g, g^2, \ldots\}$.
 - Montrez que s'il existe $h \in A$ tel que f = gh alors la fonction:

$$\begin{array}{ccc} \phi \colon S_f^{-1} A & \longrightarrow & S_g^{-1} A \\ (a, f^N) & \mapsto & \mathfrak{ah}^N, g^N \end{array}$$

est un homeomorphisme.

- Montrez que si $g = f^M$ pour certain $M \in \mathbb{N}$, alors l'homeomorphisme φ est un isomorphisme.
- (4) Soit $A = \mathbb{C}[X]/(X^2)$.
 - Montrez que A est un anneau local.
 - Trouver l'unique idéal maximal de A.
- (5) Soient A un anneau intègre, $S \subseteq A$ un sous-ensemble multiplicatif et I un idéal de A tel que $S \cap I = \emptyset$.
 - Montrez que $S^{-1}I = \{[i, s] : i \in I \text{ et } s \in S\}$ est un idéal de $S^{-1}A$.
 - Montrez que l'homomorphisme $\phi \colon S^{-1}A/S^{-1}I \longrightarrow \bar{S}^{-1}(R/I)$ est un isomorphisme où \bar{S} est l'image de S sous la projection canonique $\pi \colon R \longrightarrow R/I$.