Université Galatasaray, Département de Mathématiques 2014-2015 - 2. Semestre – Math 325 - Théorie Des Fonctions Complexes Examen Partiel 2, 15 avril 2015 – Ayberk Zeytin 90 mins. Nom & Prénom:

Question:	1	2	3	4	Total
Points:	33	16	12	12	73
Score:					

Question 1 (33 points)

(a) (8 points) Développer $f(z)=e^{2z+3}$ en z=2.

(b) (8 points) Développer $f(z) = \frac{1}{z}$ en z = 2.

(c) (7 points) Soit $f(z) = \frac{e^{2z+3}}{z} = \sum_{n=0}^{\infty} a_n (z-2)^n$. Calculer a_0 , a_1 et a_2 . Indication: Utiliser (a) et (b).

(d) (5 points) Calculer la somme $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!} \ \underline{\text{Indication:}} \ \text{Utiliser (a)}.$

(e) (5 points) Calculer $\int_{\alpha} \frac{e^{2z+3}}{(z-2)} dz$; où α est la courbe |z-5/2|=1 orientée de sens anti-horaire.

Question 2 (16 points)

Soit α_R l'arc défini par le segment [-R,R] (on l'appelle ℓ_R) et le demi-cercle situé dans la demi-plan supérieur de diamétre le segment [-R,R] (on l'appelle C_R) avec R>5 orienté de sens anti-horaire.

(a) (8 points) Calculer
$$\int_{\alpha_R} \frac{e^{\mathrm{i}z}}{z^2+2z+2} \mathrm{d}z$$
.

(b) (8 points) Étant donné
$$\lim_{R \longrightarrow \infty} \int_{C_R} \frac{e^{iz}}{z^2 + 2z + 2} dz = 0$$
, en déduire $\int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 + 2x + 2} dx = -\frac{\pi}{e} \sin(1)$ et $\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 2x + 2} dx = \frac{\pi}{e} \cos(1)$.

Question 3 (12 points)

Soit f une fonction analytique dans un ouvert qui contient proprement $B(z_0,r) \cup \{z \in \mathbf{C} : |z-z_0|=r\}$; où r>0. Supposons que $M_r=\sup\{|f(z)|: |z-z_0|=r\}<\infty$. Montrer que

$$|f^{(k)}(\alpha)| \leq \frac{k! M_r}{r^k}$$

Question 4 (12 points)

Supposons que f: $\mathbf{C} \longrightarrow \mathbf{C}$ une fonction analytique et $|f(z)| < me^{\alpha x}$ pour tout $z = x + iy \in \mathbf{C}$; où $m, \alpha \in \mathbf{R}_{>0}$. Montrer que $f(z) = Ae^{\alpha z}$ pour certain $A \in \mathbf{C}$.