MATH 452 ÉNONCÉS DES EXERCICES 2

A. ZEYTİN

On suppose que X est un ensemble non-vide, τ une topologie sur X.

- (1) Montrer que si B est un ouvert de l'espace topologique X et $A \cap B = \emptyset$ alors $\overline{A} \cap B = \emptyset$ mais que $\overline{A} \cap \overline{B}$ n'est pas nécessairement vide.
- (2) Décider si vrai ou faux:

$$\overline{\bigcup_{i\in I}A_i}=\bigcup_{i\in I}\overline{A_i}.$$

- (3) Déterminer la frontière et l'intérieur des ensembles suivantes:
 - $ightharpoonup \mathbf{Q} \times \mathbf{Q} \subset \mathbf{R}^2$,
 - ► $\{(x,y) \in \mathbf{R}^2 : 0 < x < 12 \text{ et } y = 0\},$
 - ▶ $\{(x, y, z) \in \mathbf{R}^3 : 0 < x < 1, 0 < z < 1 \text{ et } y = 1\},$
 - $\blacktriangleright \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 = 1\},$
- (4) Soit X un espace topologie et A une partie de X. Montrer que:
 - $\blacktriangleright \partial(A) = \partial(A^c)$
 - $ightharpoonup A = \partial A$ si et seulement si A est fermé et d'intérieur vide.
 - ▶ $\partial(A \cup B) \subset \partial(A) \cup \partial(B)$ et que l'inclusion peut être stricte.
 - $\blacktriangleright \ \overline{A \cup B} = \overline{A} \cup \overline{B}$
- (5) Soit $X = \{a + b\sqrt{2} \in \mathbf{R} : a, b \in \mathbf{Z}\}.$
 - ▶ Démontrer que X est fermé sous l'addition et la multiplication.
 - ▶ Soit $u = \sqrt{2} 1$. Démontrer que pour tous a < b il existe un $n \in N$ tel que $0 < u^n < b a$.
 - ▶ Déduire qu'il existe $m \in \mathbf{Z}$ tel que $a < mu^n < b$.
 - ▶ En dédure que $\overline{X} = \mathbf{R}$.
- (6) Soit $X = \{0, 1\}$ muni de la famille des ouverts $\tau = \{\emptyset, X, \{0\}\}$. Décider si l'espace topologique (X, τ) est Hausdorff.
- (7) Soient $(X, \tau_X \text{ et } Y, \tau_Y \text{ deux espaces topologiques, } \{\alpha_n\}_{n \in \mathbb{N}} \text{ une suite dans } X \text{ et } \{\beta_n\}_{n \in \mathbb{N}} \text{ une suite dans } Y.$ Montrer que $\lim \alpha_n = \alpha \text{ et } \lim \beta_n = \beta \text{ si et seulement si } \lim \zeta_n = \zeta; \text{ où } \zeta_n \text{ est la suite définie par } (\alpha_n, \beta_n) \text{ dans } X \times Y.$
- (8) Soit X un espace topologique et f une application quelconque de X dans un ensemble Y. On dit qu'une partie A de Y est ouverte si $f^{-1}(A)$ est un ouvert de X. Vérifier qu'on a définie une topologie sur Y.
- (9) Soient K, K' deux parties compactes d'un espace topologique X. Démontrer que
 - ▶ $K \cap K'$, et
 - $ightharpoonup K \cup K'$

sont compactes aussi.

(10) Sur $X = \mathbb{R}^2$ on définit la distance entre (a_1, b_1) et (a_2, b_2) comme:

$$\max(|(a_2-a_1)+(b_2-b_1)|, |a_2-a_1-2(b_2-b_1)|).$$

- ► Montrer que (X, d) est un espace métrique.
- ► Calculer la distance entre quelques points de X.
- ▶ Déssiner sa boule unite ouverte et fermée.
- (11) On note $X = \ell^{\infty}$ l'espace des suites réelles bornées, et $Y = c_0$ l'espace des suites réelles tendant vers 0, tous deux munis de la métrique

$$d(x,y) = \sup_{n \in \mathbf{N}} |x_n - y_n|.$$

- ► Pour $x_n = (-1)^n$ et $y_n = \sin(\frac{1}{n})$ calculer $d(x_n, y_n)$. ► Pour $x_n = e^{1/n}$ et $y_n = \cos(1/n^2)$ calculer $d(x_n, y_n)$.
- ▶ Montrer que Y est fermé dans X.
- ▶ Montrer que l'ensemble des suites nulles à partir d'un certain rang est dense dans Y mais pas dans X.

Indication: Une suite de l^{∞} est notée $(x^p)_{p \in \mathbb{N}}$, pour chaque $p \geq 0$, x^p est elle même une suite $x^p =$ $(x^{p}(0), x^{p}(1), x^{p}(2), \ldots).$

- (12) Soit $X = C([0,1], \mathbf{R})$ muni de la métrique $d(f,g) = \int_0^1 |f(t) g(t)| dt$.
 - ▶ Pour $f(t) = \sin(t)$ et $g(t) = \cos(t)$ calculer d(f, g).

Pour $f(t) = \sin(t)$ et $g(t) = \frac{1}{t}$ calculer d(f, g).

Pour $f(t) = t^2$ et $g(t) = \frac{1}{t}$ calculer d(f, g).

Repeter le même exercice en utilisant la métrique $d(f, g) = \sup_{t \in [0, 1]} |f(t) - g(t)|$

- (13) Trouver un p > 1, $p \in \mathbf{R} \cup \{\infty\}$ tels que les suites suivantes appartiennent à ℓ^p :

 - $\begin{bmatrix}
 \frac{1}{j^3} \\
 \frac{j}{e^j}
 \end{bmatrix}_{j \in \mathbf{N}}$ $\begin{bmatrix}
 \frac{j}{e^j} \\
 \frac{\sin(1/j)}{j^{10}}
 \end{bmatrix}_{j \in \mathbf{N}}$
- $(14) \ \ \text{Donner deux \'el\'ements, } \alpha = \{\alpha_j\}_{j \in \mathbf{N}} \ \text{et } \beta = \{\beta_j\}_{j \in \mathbf{N}} \ \text{de } \ell^2 \ \text{et calculer d}(\alpha,\beta).$