MATH 501 EXERCISES 1

A. ZEYTİN

Throughout by C (P^1 , resp.) we denote the field of complex numbers (Riemann sphere, resp.) and z is always a point of \mathbf{P}^1 . By $\varphi: S^2 \setminus \{N = (0, 0, 1)\} \longrightarrow \mathbf{C}$ we denote the stereographic projection and by ψ its inverse.

- (1) Show that the eight points $(\pm \frac{\sqrt{3}}{3}, \pm \frac{\sqrt{3}}{3}, \pm \frac{\sqrt{3}}{3})$ are on S² and compute their images under φ .
- (2) Can you find 4 points on S^2 which form a tetrahedron? Hint : Use (1).
- (3) Describe the following sets geometrically:
 - ▶ $\psi(C_r)$; where $C_r \subset \mathbf{C}$ is the circle with radius r and center 0.
 - ▶ $\psi(\ell_m)$; where $\ell_m \subset \mathbf{C}$ is the line passing through 0 with slope m
 - $\varphi(S^2 \cap \{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_3 = 0\})$
 - $\varphi(S^2 \cap \{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_2 = 0\})$
 - $\varphi(S^2 \cap \{(x_1, x_2, x_3) \in \mathbf{R}^3 : x_1 = 0\})$
- (4) Recall that for $z = x + iy \in \mathbf{C}$ we define complex conjugation by $\overline{z} = x iy$. Using stereographic projection complex conjugation can be interpreted as a map from S^2 to S^2 . Can you give a geometric description of this interpretation?
- (5) Investigate the nature of following functions at ∞ (e.g. are the meromorphic?, do they have poles, zeroes?, if yes of what order?, etc.)
 - ▶ f(z) = z + 3
 - ▶ f(z) = z + 1/z
 - ► $f(z) = e^{z/(z+1)}$
 - ▶ f(z) = sin(1/(z-1))
 - ► $f(z) = ze^{1/z}$
 - ▶ $f(z) = \frac{z+1}{z^2}$

(6) Determine the zeroes and poles of the following functions on \mathbf{P}^1 together with their multiplicities.

- $\blacktriangleright f(z) = z^3 + z$
- ► f(z) = 3z 2
- $f(z) = \frac{z^2 + 3}{z^4 + 3z^2 + 2}$ $f(z) = z^2 2z + 1$
- ▶ $f(z) = \frac{2z+1}{z(z^3-5)}$

Can you make a conjecture incorporating the multiplicities of zeroes and poles of a function on \mathbf{P}^1 .