MATH 501 EXERCISES 2

A. ZEYTİN

Throughout by C (P^1 , resp.) we denote the field of complex numbers (Riemann sphere, resp.) and z is always a point of \mathbf{P}^1 . By $\varphi: S^2 \setminus \{N = (0, 0, 1)\} \longrightarrow \mathbf{C}$ we denote the stereographic projection and by ψ its inverse.

(1) Find the zeroes and poles of the following functions and verify that $\sum_{\alpha \in \mathbf{P}^1} \nu_{\alpha}(f) = 0$:

- ▶ f(z) = $\frac{z^2+3}{z^4+3z^2+2}$ ▶ f(z) = $\frac{z+2}{z^2+7z+12}$ ▶ f(z) = $\frac{6}{z^3+6z^2+11z+6}$ ▶ f(z) = $\frac{z+2}{z^2+5z}$ ▶ f(z) = $\frac{2z+5}{(z-1)(z+5)(z-2)^4}$
- (2) Investigate the covering of \mathbf{P}^1 determined by the following functions (i.e. find the number of sheets, the branch points and the nature of branching):
 - ▶ f(z) = $\frac{z^3}{z^4 + 27}$ ▶ f(z) = $\frac{z^2}{(z-1)^2(z-2)}$ ▶ f(z) = $\frac{z-1}{z^3-z}$ ▶ f(z) = $\frac{z^4}{1-z}$
- (3) Let f be a rational function so that if |z| = 1 then |f(z)| = 1. Show that if α is a zero of f(z) then $\beta = \frac{1}{\alpha}$ is a pole of f(z). Can you guess a general form for f(z)?
- (4) Let a_1, \ldots, a_n and b_1, \ldots, b_m be distinct points on \mathbf{P}^1 and let k_1, \ldots, k_n and l_1, \ldots, l_m be positive integers. Find necessary and sufficient conditions for the existence of a rational function f(z) with a zero of order k_i at a_i and a pole of order l_i at b_j for each i = 1, 2, ..., n and j = 1, 2, ..., m.