MATH 501 EXERCISES 3

A. ZEYTİN

Throughout by C (P¹, resp.) we denote the field of complex numbers (Riemann sphere, resp.) and *z* is always a point of P¹. By φ : S² \{N = (0,0,1)} \longrightarrow C we denote the stereographic projection and by ψ its inverse.

(1) Let X be a set and G a group acting on X. Show that the relation

 $x_1 \sim x_2 : \Leftrightarrow \text{ there is a } g \in G \text{ so that } g \cdot x_1 = x_2,$

defines and equivalence relation on X.

- (2) Let $\Delta \subset \mathbf{P}^1$ be any subset.
 - Show that the set of elements of $PSL_2(\mathbf{C})$ fixing Δ set-wise, denoted by StabG is a subgroup.
 - For $\Delta = \{0, 1, \infty\}$ show that $\operatorname{Stab}\Delta$ is isomorphic to the symmetric group on 3 letters, S^3 .
- (3) Show that 3 points on \mathbf{P}^1 determine a unique circle in \mathbf{P}^1 . Deduce that $\mathrm{PSL}_2(\mathbf{C})$ acts transitively on the set of circles in \mathbf{P}^1 .
- (4) For any distinct 4 elements, z_0, z_1, z_2 and z_3 in \mathbf{P}^1 we define their *cross ratio* as:

$$[z_0, z_1; z_2, z_3] := \mathsf{T}(z_0);$$

where $T \in PSL_2(\mathbf{C})$ is the unique transformation on \mathbf{P}^1 sending z_1 to 0, z_2 to 1 and z_3 to ∞ .

- Show that $PSL_2(\mathbf{C})$ does not act 4-transitively on \mathbf{P}^1 .
- ▶ Show that there is a element $T \in PSL_2(\mathbb{C})$ sending and distinct z_0, z_1, z_2 and z_3 to w_0, w_1, w_2 and w_3 (resp.) if and only if $[z_0, z_1; z_2, z_3] = [w_0, w_1; w_2, w_3]$. How unique is T? (Hint: Use Exercise 2).
- Investigate what happens to the cross-ratio (defined in Exercise 2) if you act on it by the symmetric group on 4 letters.