MATH 501 EXERCISES 5

A. ZEYTİN

Throughout by \mathbb{C} (\mathbb{P}^1 , resp.) we denote the field of complex numbers (Riemann sphere, resp.) and z is always a point of \mathbb{P}^1 . By $\varphi \colon S^2 \setminus \{N = (0,0,1)\} \longrightarrow \mathbb{C}$ we denote the stereographic projection and by ψ its inverse.

- (1) Show that hyperbolic elements in $PSL_2(\mathbf{C})$ do fix a disk whereas loxodromic elements do not.
- (2) Show that not every elliptic element in $PSL_2(\mathbf{C})$ is of finite order.
- (3) Show that a non-constant rational function cannot be periodic.
- (4) Show that
 - ightharpoonup $\mathbf{Z}[i] = \{a + bi \in \mathbf{C}: a, b \in \mathbf{Z}\}$, and
 - ► $\mathbf{Z}[e^{2\pi i/3} = \{a + b(e^{2\pi i/3}) \in \mathbf{C}: a, b \in \mathbf{Z}\}$

are discrete additive subgroups, i.e. lattices, in \mathbf{C} and find their Dirichlet regions. On the other hand, show that the set $\mathbf{Z}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbf{C} : a, b \in \mathbf{Z}\}$ is not a discrete subset of \mathbf{C} , and hence is not a lattice, although it is a 2 dimensional \mathbf{Z} -module! (Hint: Observe that $\sqrt{2} - 1 < 1$ and hence arrive to a conclusion by showing that $\mathbf{Z}[\sqrt{2}]$ is dense in \mathbf{R} .) Prove a similar result for the sets $\mathbf{Z}[\sqrt{d}]$; where d is a positive square-free integer.

- (5) Let $h(z) = \pi^2 \csc^2(\pi z) \sum_{n=-\infty}^{\infty}$. Prove that:
 - h(z+1) = h(z) for all $z \in \mathbb{C}$.
 - ▶ $\lim_{z\longrightarrow 0} h(z)$ is finite.
 - ▶ Deduce that h has finite limit at all integers.
 - ▶ Show that h(z) is bounded for all $z \in [0,1] \subset \mathbf{R}$, i.e. there is some $M \in \mathbf{R}_+$ so that |h(z)| < M for any $z \in [0,1]$. Deduce that h(z) is continuous for any $z \in \mathbf{R}$.
 - ▶ Show that h(z/z) + h((z+1)/2) = 4h(z). Use this to show that M = 0.
 - ▶ Deduce that the series expansion for $\csc(\pi z)$.
- (6) Prove argument principle using residues, i.e. prove that if f is analytic inside and on a regular closed curve γ , then the number of zeroes of f inside γ is equal to $\frac{1}{2\pi i} \int_{\gamma} f'/f$. Can you explain why this is called the argument principle?
- (7) Prove Rouché's theorem, i.e. prove that if f and g are two analytic functions inside and on a closed curve γ and if |f(z)| > |g(z)| for all $z \in \gamma$, then the number of zeroes of f in the region enclosed by γ is the same as the number of zeroes of f+g inside γ . (Hint: First compute $\int_{\gamma} f'/f$ if f is the product of two functions. Then write f+g=f(1+g/f). What happens to the resulting integrand?) Use Rouché' theorem to find
 - ▶ $3e^z z$ in $|z| \le 1$
 - ▶ $1/3 e^z z \text{ in } |z| \le 1$
 - ► $z^4 5z + 1$ in $|z| \le 2$
 - $z^6 5z^4 + 3z^2 1$ in $|z| \le 1$
- (8) Using Rouché's theorem derive fundamental theorem of algebra.
- (9) Determine the residues of the following functions at their poles:
 - ► $f(z) = \frac{1}{z^2 + z^4}$
 - $f(z) = \cot(z)$
 - $ightharpoonup f(z) = \csc(z)$
 - $f(z) = ze^{1/z}$
 - $f(z) = \frac{1}{z^2 + 3z + 2}$
- (10) Using residues evaluate the following integrals:
 - $\blacktriangleright \int_{|z|=1} \cot(z) dz$

 $\blacktriangleright \int_{|z|=2} z e^{3/z} dz$