MATH 501 EXERCISES 6

A. ZEYTİN

Throughout by C (P^1 , resp.) we denote the field of complex numbers (Riemann sphere, resp.) and z is always a point of \mathbf{P}^1 . By $\phi: S^2 \setminus \{N = (0, 0, 1)\} \longrightarrow \mathbf{C}$ we denote the stereographic projection and by ψ its inverse. Ω denotes a lattice in C generated by two R-linearly independent complex numbers ω_1 and ω_2 .

- (1) Say f: $\mathbf{C} \longrightarrow \mathbf{P}^1$ an elliptic function with periods ω_1 and ω_2 so that $\omega_1/\omega_2 \in \mathbf{R}$.
 - Assume that $\omega_1/\omega_2 \in \mathbf{Q}$. Write $\omega_1/\omega_2 = p/q$ where p and q are relatively prime. Show that the assumption that f being elliptic (i.e. doubly periodic) is equivalent to f being simply periodic with period $\omega_0 = \frac{1}{q}\omega_2.$
 - ► If ω_1/ω_2 is irrational then f is constant. (Hint: Show that whenever τ is irrational the set {m n τ : m, n \in N} is dense in R).
- (2) We define the Weierstraß sigma function as

$$\sigma(z) = z \Pi'_{\omega \in \Omega} (1 - \frac{z}{\omega}) \exp(\frac{z}{\omega} + \frac{1}{2} (\frac{z}{\omega})^2).$$

Assuming the convergence of σ show that

- σ has a simple zero at each lattice point ω ,
- \blacktriangleright σ is odd.

Define the Weierstraß zeta function as $\zeta(z) = \frac{\sigma'}{\sigma}(z)$ (note that this is NOT the Riemann zeta!).

- Using the fact that ζ is the *logarithmic derivative* of σ , find an infinite sum which represents ζ .
- Use previous part to see that ζ is an odd function.
- Write ζ' as a rational function of \wp and \wp' .
- Show that ζ is NOT elliptic. (Hint: Using the above question, integrate to see $\zeta(z + \omega_i) = \zeta(z) + \eta_i$ for i = 1, 2. Then, for any $z \in \mathbf{Z}$ let P be the fundamental parallelogram with one vertex at P and compute $\int_{\partial P} \zeta(z) dz \text{ to see that } 2\pi i = \eta_1 \omega_1 + \eta_2 \omega_2. \text{ Why does this say that } \zeta \text{ is not elliptic?})$ Use the fact that ζ is not elliptic and is the logarithmic derivative of σ to show $\sigma(z + \omega) = -\sigma(z) \exp(\eta(z + \omega))$
- $\frac{1}{2}\omega$)) whenever $\frac{1}{2}\omega \notin \Omega$.
- (3) Show that any rational function of \wp and \wp' , say $\frac{f(\wp,\wp')}{g(\wp,\wp')}$ can be written as $f_1(\wp) + \wp' f_2(\wp)$, where $f_1, f_2 \in \mathbf{C}(\wp)$. (Hint: Use the differential equation relating \wp and \wp' .)
- (4) Let $[a_1], \ldots, [a_r]$ and $[b_1], \ldots, [b_s]$ be distinct points in C/Ω and let k_1, \ldots, k_r and l_1, \ldots, l_s be positive integers. If the conditions
 - i. $\sum_{i=1}^{r} k_i = \sum_{j=1}^{s} l_j,$

ii. the sets $[a_1] \cup \ldots \cup [a_r]$ and $[b_1] \cup \ldots \cup [b_s]$ are disjoint, iii. $\sum_{i=1}^r k_i a_i \equiv \sum_{j=1}^s l_j b_j Mod(\Omega)$, hold, then there is an elliptic function f who has zeroes of order k_i at each a_i for $i = 1, 2, \ldots, r$ and poles of order l_j at b_j for each j = 1, 2, ..., s and no other zeroes and poles. (Hint: Consider the function f(z) = $\frac{\prod_{i=1}^{r} \left(\sigma(z-a_i)^{k_i}\right)}{\prod_{j=1}^{s} \left(\sigma(z-b_j)^{l_j}\right)}.$

•
$$\wp(\mathfrak{u}+\mathfrak{v}) = \frac{1}{4} \left(\frac{\wp'(\mathfrak{u})-\wp'(\mathfrak{v})}{\wp(\mathfrak{u})-\wp(\mathfrak{v})} \right)^2 - (\wp(\mathfrak{u})+\wp(\mathfrak{v})), \text{ and}$$

• $\wp'(\mathfrak{u}+\mathfrak{v}) = \left(\frac{\wp'(\mathfrak{u})-\wp'(\mathfrak{v})}{\wp(\mathfrak{u})-\wp(\mathfrak{v})} \right) \wp(\mathfrak{u}+\mathfrak{v}) + \frac{\wp(\mathfrak{u})\wp'(\mathfrak{v})-\wp(\mathfrak{v})\wp'(\mathfrak{u})}{\wp(\mathfrak{u})-\wp(\mathfrak{v})}.$