MATH 501 EXERCISES 7

A. ZEYTİN

Throughout by C (P¹, resp.) we denote the field of complex numbers (Riemann sphere, resp.) and z is always a point of P¹. By φ : S² \{N = (0,0,1)} \longrightarrow C we denote the stereographic projection and by ψ its inverse. Ω denotes a lattice in C generated by two **R**-linearly independent complex numbers ω_1 and ω_2 .

- (1) Say γ_0 , γ_1 and γ_2 are three paths from a to b in $X \subset \mathbf{P}^1$ so that Γ_1 defines a homotopy between γ_0 and γ_1 and Γ_2 defines a homotopy between γ_1 and γ_2 . Show that there exists a homotopy Γ_3 between γ_0 and γ_2 , and hence deduce that homotopy equivalence is an equivalence relation.
- (2) Describe the Riemann surface of the functions $\sqrt{(z-a)^2}$, where $a \in \mathbf{C}$.
- (3) Construct the Riemann surface of $\arcsin(z)$.
- (4) Find the position and order of the branch points of the following functions:

$$\bigvee \sqrt{\prod_{i=1}^{5} (z-i)}$$

$$b \log(\sin(z))$$

$$\bigvee \sqrt{1-z^3}$$

Further, in each case, determine a *largest* cut plane so that the function admits a branch.