MATH 511 EXERCISES 1

A. ZEYTİN

Throughout by K we denote a field and by R a commutative ring with identity.

- (1) Let $p \in K[t]$ be a polynomial of degree $n \ge 1$ and let R = K[t]/(p). Show that for and element $q \in R$ there is a unique polynomial $q_o \in R$ so that $\pi(p) = q_o$; where π denotes the canonical projection π : $K[t] \longrightarrow R$. What if n = 0?
- (2) Let $p \in K[t]$. Show that the quotient K[t]/(p) is a field if and only if p is irreducible.
- (3) Apply Euclidean algorithm to the following polynomials, p and q, to find their greatest common divisor(gcd):
 - ▶ $p(t) = t^3 1$ and $q(t) = t + 1 \in \mathbf{Q}[t]$
 - ▶ $p(t) = t^3 + 4t^2 + t 6$ and $q(t) = t^5 6t + 5$ in Q[t]

In each case, write gcd as a linear combination of p and q.

- (4) Show that
 - ▶ units in a ring R form a group.
 - ► for I and J ideals of R so that I+J = R, there is a isomorphism between the unit groups of the rings $R/(I \cap J)$ and $R/I \oplus R/J$.

Write and prove an appropriate generalization of this theorem and explain why this is a generalization of Chinese Remainder Theorem.

- (5) Show that if $p(t) = t^n + a_{n-1}t^{n-1} + \ldots + a_0$ has a root in **Q** then it has a root, say $m \in \mathbf{Z}$. In this case, show that $m|a_0$.
- (6) Decide whether the following polynomials are irreducible over the given rings
 - \blacktriangleright p(t) = t⁴ + 4 over Z/5Z
 - ▶ $p(t) = t^3 + 2t^2 + 2t + 1$ over Z/7Z
 - ▶ $p(t) = t^3 + 3t^2 8$ over (use previous exercise.)
 - ▶ $p(t) = t^4 22t^2 + 1$ over Z[t]
 - ▶ $p(t) = 8t^3 + 6t^2 9t + 24$ over $\mathbf{Z}[t]$
 - $p(t) = 2t^{10} 25t^3 + 10t^2 30$ over $\mathbf{Z}[t]$
- (7) Show that extension degree of fields is multiplicative, i.e if L is a finite extension of K and K is a finite extension of F then:

$$[L:F] = [L:K][K:F].$$

- (8) Determine the ring of integers of quadratic number fields, i.e $\mathbf{Q}(\sqrt{d})$; where d is a square-free integer.
- (9) Show that an element α of a ring of integers \mathcal{O}_{K} is a unit if and only if its norm over \mathbf{Q} is ± 1 . Show that $x + y\sqrt{d} \in \mathbf{Z}[\sqrt{d}]$ is a unit if and only if the pair (x, y) is a solution to either the Pell equation $x^{2} dy^{2} = 1$ or the equation $x^{2} dy^{2} = -1$.
- (10) Recall that an integral domain R is said to be a *Euclidean domain* if there exists a norm map N : R \longrightarrow N \cup {0} satisfying:
 - i. N(r) = 0 if and only if r = 0,
 - ii. For all $a, b \in R$, with b non-zero, there exist $q, r \in R$ such that a = bq + r, and N(r) < N(b).
 - Show that a Euclidean domain is a principal ideal domain, and deduce that it is a unique factorization domain.
 - Show that $\mathbb{Z}[\sqrt{d}]$ is a Euclidean domain if d = -2, -1, 2or3.
- (11) Show that for $K = \mathbf{Q}(\sqrt[3]{2})$, the norm of the element $\alpha = a + b\sqrt[3]{2} + c\sqrt[3]{4}$, we have $N_K(\alpha) = a^3 + 2b^3 + 4c^3 6abc$. Try to obtain a similar formula for the trace.

(12) Let ζ₅ = e^{2π√-1/5} and consider the field K = Q(ζ₅).
▶ Find the minimal polynomial of ζ₅.
▶ Determine all the embeddings of K into C.

- ► For an element $\alpha = a + b\zeta_5 \in \mathbf{Q}(\zeta_5)$ prove that $N_K(\alpha) = \frac{a^5 + b^5}{a + b}$. Using this, compute $N_K(1 + \zeta_5)$.