MATH 511 EXERCISES 2

A. ZEYTİN

Throughout by K we denote a number field and by \mathcal{O}_{K} its ring of integers. By R we denote a commutative ring with unity.

- (1) Find all conjugates of the following:

 - $\sqrt{2} + \sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\zeta_5 = e^{2\pi\sqrt{-1}/5}$

(2) Let $K = Q(\sqrt{3}, \sqrt{5})$.

- ▶ Describe all embeddings of K into C. (Since [K : Q] = 4, there are 4 such embeddings which will be denoted by σ_1 , σ_2 , σ_3 and σ_4 .)
- Find an element $\alpha \in K$ so that $\sigma_1(\alpha) = \sigma_2(\alpha) = \sigma_3(\alpha) = \sigma_4(\alpha)$.
- Find an element $\beta \in K$ so that $\sigma_i(\alpha) \neq \sigma_j(\alpha)$ whenever $i \neq j$.
- Find an element γ so that $\sigma_1(\gamma) = \sigma_2(\gamma)$, $\sigma_3(\gamma) = \sigma_4(\gamma)$ but $\sigma_2(\gamma) \neq \sigma_3(\gamma)$.
- For $\theta = \sqrt{3} + \sqrt{5}$, write the map \mathfrak{m}_{θ} with respect to the base $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$ and find its norm and trace.
- Show that $x^4 16x^2 + 4$ is the minimal polynomial of $\theta = \sqrt{3} + \sqrt{5}$ and deduce that this is indeed the characteristic polynomial of the map m_{θ} with respect to the basis {1, θ , θ^2 , θ^3 }.
- Compute $N_{K}(\theta)$ and $\operatorname{Tr}_{K}(\theta)$. Observe that $N_{K}(\theta) = \prod_{i=1}^{4} \sigma_{i}(\theta)$ and $\operatorname{Tr}_{K}(\theta) = \sum_{i=1}^{4} \sigma_{i}(\theta)$.
- (3) Prove that if α is an algebraic number with minimal polynomial $p_{\alpha}(t) \in \mathbf{Z}[t]$ of degree d, then the characteristic polynomial of \mathfrak{m}_{α} is equal to $\mathfrak{p}_{\alpha}(\mathfrak{t})$. <u>Hint</u>: Try to express \mathfrak{m}_{α} with respect to the basis $\{1, \alpha, \alpha^2, \ldots, \alpha^{d-1}\}$. The rest is linear algebra...
- (4) Let K be a number field with $[K : \mathbf{Q}] = n$ and let $\sigma_1, \ldots, \sigma_n$ denote the n distinct embeddings of K into C. Show that for any element $\alpha \in K$

$$N_K(\alpha) = \prod_{i=1}^n \sigma_i(\alpha) \text{ and } \operatorname{Tr}_K(\alpha) = \sum_{i=1}^n \sigma_i(\alpha)$$

Deduce that if $\alpha \in \mathcal{O}_K$, then both $\operatorname{Tr}_K(\alpha)$ and $N_K(\alpha)$ are integers.

- (5) Let α be an algebraic number whose minimal polynomial is of degree n. Compute the discriminant of the set $\{1, \alpha, \dots, \alpha^{n-1}\}$ in $K = Q(\alpha)$. <u>Hint</u>: What is a Vandermonde determinant?
- (6) Show that for a ring R ascending chain condition is equivalent to the condition that every ideal is finitely generated.
- (7) Show that every finite integral domain is a field.
- (8) Prove the primitive element theorem. Furthermore, find the element $\alpha \in K = \mathbf{Q}(\sqrt{2}, \sqrt[3]{3})$ for which $K = \mathbf{Q}(\alpha)$.