MATH 511 EXERCISES 3

A. ZEYTİN

Throughout by K we denote a number field and by \mathcal{O}_{K} its ring of integers. By R we denote a commutative ring with unity.

- (1) Prove unicity part of Theorem 9 part (i), i.e. show that if R is a Noetherian domain in which every irreducible is a prime then factorisation in R is unique.
- (2) Let p be a prime ideal of R. If one considers the map from ideals of R_p to ideals of R given by $I \mapsto I \cap R$ then, this map is
 - ▶ injective, and
 - if restricted to prime ideals, it gives a bijection between prime ideals of R_p and prime ideals of R contained in p.

In particular, show that if R is Noetherian, then R_p is Noetherian.

- (3) Let R be an integral domain with field of fractions K, and L some extension of K. Show that R is integrally closed in K if and only if for all $\alpha \in L$ such that α is integral over R, the monic minimal polynomial for α over K has coefficients in R.
- (4) Show that if R is a Noetherian ring, and I an ideal, such that there exists a unique prime ideal p containing I, then I contains some power of p. <u>Hint</u>: first show that if an element x is contained in every prime ideal of a ring, then $x^n = 0$ for some n. Do this by considering the family of all ideals such that no power of x lies in them. Next, consider the ring R/I.
- (5) Show that if K is the field of fractions of a Noetherian integral domain R, and $I \subset K$ is an R-module (i.e., it is closed under addition, and under multiplication by elements of R), then I is a fractional ideal of R if and only if I is finitely generated.
- (6) Show that for any integral domain R, if I and J are fractional ideals of R, then (I : J) is a fractional ideal of R.
- (7) Check that for fractional ideals I, J, and a prime ideal p, we have $I_pJ_p = (IJ)_p$, and if R is Noetherian, $(I_p : J_p) = (I:J)_p$.
- (8) Set $R = Z[\sqrt{-3}]$.
 - ▶ Show that the ideal (2) in R cannot be written as a product of prime ideals.
 - Show that the ideal $(2, 1 + \sqrt{-3})$ in R does not have any fractional ideal inverse.
 - Try to find other integers n so that $\mathbf{Z}[\sqrt{n}]$ possesses similar properties.
- (9) A geometric version of the above exercise can be given as follows: Set R = C[x, y] (you may replace C by any field!).
 - Show that the ideal (x^2, y) in R cannot be written as a product of prime ideals.
 - Show that the ideal (x, y) in R does not have any fractional ideal inverse.