MATH 511 EXERCISES 4

A. ZEYTİN

Throughout by K we denote a number field and by \mathcal{O}_{K} its ring of integers. By R we denote a commutative ring with unity.

(1)

- (2) Set $K = Q(\sqrt{-17})$.
 - Determine the ring of integers of K. More precisely, show that $\mathcal{O}_{K} = \mathbb{Z}[\sqrt{-17}]$.
 - Show that factorization in \mathcal{O}_K is not unique. <u>Hint</u>: Try to factor 18. And deduce that $h_K > 1$, in fact, it is equal to 4.
 - Set $\wp_1 = \langle 2, 1 + \sqrt{-17} \rangle$, $\wp_2 = \langle 3, 1 + \sqrt{-17} \rangle$ and $\wp_3 = \langle 3, 1 \sqrt{-17} \rangle$.
 - ▶ Show that $18 \in \wp_1^2$ and deduce \wp_1^2 is a factor of (18).
 - Without using the previous part show that $v_{g_1}((18)) = 2$, $v_{g_2}((18)) = 2$ and $v_{g_3}((18)) = 2$.
 - Determine the factorization of (18) in \mathcal{O}_{K} .
 - Determine $v_{\wp_1}((2))$ in \mathcal{O}_{K} .
 - Show that $(3) = \wp_2 \wp_3$ in \mathcal{O}_K .
 - Compute the norms of all the ideals ρ_1 , ρ_2 , ρ_3 , (18) and verify the multiplicativity of norm on ideals.
- (3) Set $K = \mathbb{Q}(\sqrt{-5})$ and $\wp_1 = \langle 2, 1 + \sqrt{-5} \rangle$, $\wp_2 = \langle 3, 1 + \sqrt{-5} \rangle$, and $\wp_3 = \langle 3, 1 \sqrt{-5} \rangle$.
 - Show that for each i = 1, 2, 3 the ideal \wp_i is maximal, hence prime.
 - Compute $v_{\wp_1}(2)$ and show that $(2) = \wp_1^2$
 - Compute $v_{\wp_2}(3)$ and $v_{\wp_3}(3)$ and show that $(3) = \wp_2 \wp_3$.
 - ► Compute v_{℘i}((6)) for i = 1, 2, 3 and given the fact that no other ideals appear in the factorization of (6) determine the factorization of (6).
 - Eplain $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ using the above computations.
 - ► Compute the norms of all the ideals ℘₁, ℘₂, ℘₃, (2), (3), (6) and verify the multiplicativity of norm on ideals.
 - Can the ideals p_i , i = 1, 2, 3 be pricipal. Which ones are equivalent in the class group?
- (4) Set $K = \mathbf{Q}(\sqrt{-6})$ and $\wp_1 = \langle 2, \sqrt{-6} \rangle$.
 - Show that p_1 is a maximal ideal, hence a prime ideal.
 - ► Calculate $v_{\wp_1}(6)$.
 - Find another prime ideal \wp_2 so that $(6) = \wp_1^2 \wp_2^2$.
 - Use this to explain the two factorings of 6 as $\sqrt{-6} \cdot -\sqrt{-6}$ and $2 \cdot 3$.
- (5) Factorize
 - ▶ (6) in $\mathbb{Z}[\sqrt{-5}]$,
 - ▶ (18) in $\mathbb{Z}[\sqrt{2}]$,
 - (30) in $\mathbb{Z}[\sqrt{-29}]$.
- (6) Sketch the following lattices and their fundamental domains in \mathbf{R}^2 to observe that fundamental domain of a lattice is not uniquely determined until one specifies a set of generators:
 - ► (-1,2) and (2,2)
 - ► (1,1) and (2,3)
 - ► $(1, \pi)$ and $(\pi, 1)$
 - ► (-1, -1) and (0, 1)
- (7) Find two different fundamental domains for the lattice L in R³ generated by (0,0,1), (0,2,0) and (1,1,1). Show that volumes of the two fundamental domains are equal. Prove more generally that any fundamental domain of any lattice has same volume.

- (8) This exercise sketches a proof of the *two squares theorem*: if p is a prime number congruent to 1 modulo 4, then p is a sum of two squares:
 - ► Let p be such a prime. Show that the multiplicative group of the field with p elements has an element, say u, of order 4. In particular $u^2 = -1$.
 - ▶ Show that the set $L = \{(a, b) \in \mathbb{Z}^2 : b \equiv ua \mod p\}$ is a lattice in \mathbb{R}^2 . Can you determine one?
 - Show that the index $[\mathbf{Z}^2 : L] = p$ and deduce that if T is a fundamental domain for T, then vol(T) = p.
 - Apply Minkowski's theorem to the circle centered at the origin and of radius $r^2 = \frac{3p}{2}$ to get the result.
- (9) Prove that not every integer is a sum of three squares.
- (10) This exercise outlines a proof of *four squares theorem*: every positive integer is a sum of four integer squares:
 - Let p be an odd prime. (p = 2 can be written as $1^2 + 1^2 + 0^2 + 0^2$.) Show that the congruence $u^2 + v^2 + 1 \equiv 0 \mod p$ always has a solution in **Z**.
 - ▶ Fix a solution of the above congruence, and show that the set

$$L = \{(a, b, c, d) \in \mathbf{Z}^4 : c \equiv ua + vb \text{ and } d \equiv ub - va \mod p\}$$

is in fact a lattice in \mathbb{R}^4 with $[\mathbb{Z}^4: L] = p^2$.

- ► Apply again Minkowski's theorem to the sphere in R⁴ of radius determined by r² = 1.9p (in fact something greater than 16p² is enough!) to deduce the result for the prime number p.
- ▶ Finish the general case using the identity:

$$(a^{2} + b^{2} + c^{2} + d^{2})(A^{2} + B^{2} + C^{2} + D^{2}) =$$

 $(\mathfrak{a} A - \mathfrak{b} B - \mathfrak{c} C - \mathfrak{d} D)^2 + (\mathfrak{a} B + \mathfrak{b} A + \mathfrak{c} D - \mathfrak{d} C)^2 + (\mathfrak{a} C - \mathfrak{b} D + \mathfrak{c} A + \mathfrak{d} B)^2 + (\mathfrak{a} D + \mathfrak{b} C - \mathfrak{c} B + \mathfrak{d} A)^2$

(11) Find the embeddings $\sigma_i \colon K \longrightarrow C$ for the following fields and determine the integers s and t

- $\blacktriangleright \mathbf{Q}(\sqrt{5})$
- ► $\mathbf{Q}(\sqrt{-5})$
- \blacktriangleright **Q** $(\sqrt[4]{5})$
- \blacktriangleright Q($\sqrt[3]{5}$)
- $\mathbf{Q}(e^{2\pi\sqrt{-1}/p})$, for a prime number p.
- (12) Let K be a number field of degree n. Show that

$$\Delta(\alpha_1,\ldots,\alpha_n) = (\det(\sigma_i(\alpha_j)))$$