MATH 516 EXERCISES 1

A. ZEYTİN

Throughout we assume the domain U of f is open and connected.

- (1) Show that the map $f(z) = z_o + e^{i\theta}z$; where $\theta = \arg(z_o z_1)$ maps the real axis onto the line ℓ through z_o and z_1 .
- (2) Find the power series expansion of

 - $f(z) = z^3$ around $z_o = 1$ $f(z) = z^4 1$ around $z_o = 2$
- (3) Suppose f: $U \longrightarrow C$ is an analytic function and fix some $w \in U$. Let r > 0 be a real number so that $D(w, r) \subset U$. Use Cauchy integral formula to derive the power series expansion of f valid at least in D(w, r). Hint: Write $\frac{1}{w-z} = \frac{1}{w(1-\frac{z}{w})}$ and note that $|\frac{z}{w}| < 1$.
- (4) Use Liouville's theorem to prove the fundamental theorem of algebra: every non-constant element $p(z) \in \mathbf{C}[z]$ has a zero (or a root) in C. <u>Hint:</u> Assume not and consider $q(z) = \frac{1}{p(z)}$.
- (5) Use Exercise 4 and induction on degree to prove that if p(z) is of degree n, then it must have exactly n roots counting multiplicity.
- (6) Say f is an entire function so that f(z+1) = f(z) and $f(z+\sqrt{-1}) = f(z)$ for any $z \in \mathbb{C}$. Show that f is constant. <u>Hint</u>: Show that the image of f has to be bounded.
- (7) (Extended Liouville's theorem) Let f be an entire function. If there is an integer N \geq 0 and constants A and B so that $|f(z)| \le A + B|z|^N$ then f is a polynomial of degree at most N. <u>Hint</u>: Use induction on N.
- (8) Let f be an entire function. Show that if $\lim_{z\to\infty} f(z) = \infty$ then f must be a polynomial. <u>Hint</u>: Observe first that f can have only finitely many zeroes, say a_1, \ldots, a_n . What can you say about the function $g(z) = \frac{f(z)}{\prod_{i=1}^n (z-a_i)}$
- (9) (Minimum principle) Let f: $U \longrightarrow C$ be an analytic function and assume $f(z) \neq 0$ for all $z \in U$. Show that if there is a $z_o \in U$ so that $|f(z_o)| \leq |f(z)|$ for all $z \in U$, then f is constant. Explain, by providing an explicit example, that the non-vanishing of f assumption (i.e. $f(z) \neq 0$ for all $z \in U$) is necessary. <u>Hint</u>: Use maximum principle to an appropriate function.
- (10) Deduce fundamental theorem of algebra from Exercise 9, i.e. the minimum principle.
- (11) Find the maximum and minimum moduli of $f(z) = z^2 z$ in $\overline{D(0, 1)}$.
- (12) (Schwarz Lemma) Let f: $D(0,1) \rightarrow D(0,1)$ be an analytic function fixing the origin, i.e. f(0) = 0. Show that:
 - ► $|\mathbf{f}(z)| \le |z|$
 - ▶ |f'(0)| ≤ 1

<u>Hint:</u> Apply maximum principle to the function $g(z) = \begin{cases} \frac{f(z)}{z}, & \text{if } z \neq 0 \\ f'(0), & \text{if } z = 0 \end{cases}$.