MATH 516 EXERCISES 3

A. ZEYTİN

Throughout we assume the domain U of f is open and connected.

- (1) Let Ω be the lattice generated by 1 and $e^{2\pi\sqrt{-1/3}}$. Find a fundamental region for Ω in the shape of an equilateral hexagon. Show that the sum of residues of any function elliptic with respect to Λ is 0.
- (2) Show that the order of an elliptic function is independent of the choice of a fundamental parallelogram.
- (3) Fix a lattice $\Omega = \Omega(\omega_1, \omega_2)$. Show that the set of functions elliptic with respect to Ω is a field over **C** where addition and multiplication is defined pointwise.
- (4) Show that if f is elliptic with respect to $\Omega = \Omega(\omega_1, \omega_2)$, then f' is also elliptic with respect to Ω .

(5) Given a meromorphic function with Laurent series $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_o)^n$ around the point z_o , the *analytic* (resp. *principal*) *part* of f around z_o is defined as the series $\sum_{n=0}^{\infty} a_n (z-z_o)^n$ (resp. $\sum_{n=-\infty}^{-1} a_n (z-z_o)^n$). Suppose that f and f are functions elliptic with respect to $\Omega = \Omega(\omega_1, \omega_2)$, with

- poles at the same points in C, and
- same principal parts at these poles.

Show that f(z) - g(z) = C for some constant $C \in C$.

- (6) Let f and g be two meromorphic functions elliptic with respect to $\Omega = \Omega(\omega_1, \omega_2)$ with zeroes and poles of the same orders at the same points in **C**. Show that f(z) = Dg(z) for some constant $D \in \mathbf{C}$.
- (7) (The Weierstraß σ -function) For a lattice $\Omega = \Omega(\omega_1, \omega_2)$, we define the *Weierstraß* σ -function as:

$$\sigma(z) = \sigma_{\Omega}(z) = z \prod_{\omega \in \Omega \setminus \{0\}} \left(1 - \frac{z}{\omega}\right) e^{z/\omega + \frac{1}{2}(z/\omega)^2}.$$

Show that

- Show that $\sigma(z)$ is an odd holomorphic function on **C** with simple zeroes at each point of the lattice Ω .
- Show that $\frac{\mathrm{d}^2}{\mathrm{d}z^2}(\log(\sigma(z))) = -\wp(z).$
- Show that there are constants $a, b \in C$ so that $\sigma(z + \omega) = e^{az+b}\sigma(z)$ for all $z \in C$. Such a function is called a ϑ -function with respect to Ω .
- Prove that for any $a \in \mathbf{C} \setminus \Omega$ we have:

$$\wp(z) - \wp(a) = -\frac{\sigma(z+a)\sigma(z-a)}{\sigma(z)^2\sigma(a)^2}$$

► Show that:

$$\wp'(z) = -\frac{\sigma(2z)}{\sigma(z)^4}.$$

(8) (The Weierstraß ζ -function) For a lattice $\Omega = \Omega(\omega_1, \omega_2)$, we define the *Weierstraß* ζ -function as:

$$\zeta(z) = \zeta_{\Omega}(z) = \frac{d}{dz}(\log(\sigma(z))).$$

Show that $\zeta(z) = \frac{1}{z} + \sum_{\omega \in \Omega \setminus \{0\}} \left(\frac{1}{z-\omega} + \frac{1}{\omega} + \frac{z}{\omega^2}\right).$

- Find a linear function, $\eta(z)$, so that $\zeta(z + \omega) = \zeta(z) + \eta(\omega)$.
- For the function η you found in the previous part, show that $\eta(\omega) = 2\zeta(\omega/2)$ for any $\omega \in \Omega$.
- Show that $\sigma(z + \omega) = \pm e^{\eta(\omega)(z + \frac{\omega}{2})} \sigma(z)$.