MATH 516 EXERCISES 5

A. ZEYTİN

We fix the following matrices throughout the course:

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} L = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(1) Write the matrix $\begin{pmatrix} 10 & 7\\ 7 & 5 \end{pmatrix}$ as a product of

► S and T,

- ► S and L,
- ► T and L.

Show that the modular group $PSL_2(\mathbf{Z})$ is generated by any two of the matrices S, L and T. <u>Hint</u>: Note that it is enough to prove only the first item. The rest is a corollary of it. To show the first, prove that any matrix of the form $\begin{pmatrix} p \\ 0 \end{pmatrix}$ $\begin{pmatrix} q \\ s \end{pmatrix}$ belongs to the subgroup generated by S and T. Then show that by multiplying matrix with a proper sequence os \hat{S} and \hat{T} an arbitrary matrix can be put into this form.

(2) Show that
$$G_{2k}(\frac{pz+q}{rz+s}) = (rz+s)^{2k}G_{2k}(z)$$
 for any matrix $\gamma = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL_2(\mathbf{Z}).$

- (3) For the lattice $\Omega = \Omega(1, \sqrt{-1})$, show that:
 - ► $g_2(\Omega) = g_2(\sqrt{-1}) \in \mathbf{R} \setminus \{0\},\$ ► $q_3(\Omega) = q_3(\sqrt{-1}) = 0$
- (4) For the lattice $\Omega = \Omega(1, e^{2\pi\sqrt{-1}/3})$, show that:
 - $g_2(\Omega) = g_3(e^{2\pi\sqrt{-1}/3}) = 0$, • $\mathbf{g}_3(\Omega) = \mathbf{g}_3(e^{2\pi\sqrt{-1}/3}) \in \mathbf{R} \setminus \{0\}$

(5) Determine a point τ in the fundamental region, F, of the action of the modular group on \mathbb{H} which is equivalent

- to: $\blacktriangleright \frac{1+\sqrt{-1}}{4}$
- $\begin{array}{c}
 \frac{4}{1-\sqrt{-1}} \\
 \overbrace{6}{516+2\sqrt{-1}} \\
 \overbrace{7}{8} \\
 \overbrace{7}{516-2\sqrt{-1}} \\
 8
 \end{array}$