Université Galatasaray, Département de Mathématiques 2016 - Deuxième Semestre – Math 204 - Algèbre Abstraite Examen Final, 2 Juin 2017 – Ayberk Zeytin, 135 mins.

Nom & Prénom: ______Sign: _____

Question:	1	2	3	4	5	6	7	8	Total
Points:	6	6	12	6	16	8	24	16	94
Score:									

Question 1 (6 points)

Soit G un groupe. Montrez que si pour tout $x \in G$, $x^2 = e$ alors G est abélien. (Indication: Pour $a,b \in G$ quelconque calculez $aba^{-1}b^{-1}$. Notez que $(ab)^2 = e$.)

Question 2 (6 points)

Montrez qu'un groupe G d'ordre 200 n'est pas simple. (<u>Indication:</u> Rappelez qu'un group G est dit simple si $\{e\}$ et G sont les seuls sous-groupes distingués de G.)

Question	3	(12)	points

(a) (6 points) Determinez tout les groupes abéliens d'ordre 16.

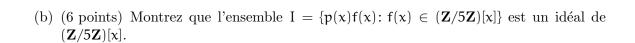
(b) (6 points) Lequel est isomorphe à $(\mathbf{Z}/4\mathbf{Z})\times(\mathbf{Z}/24\mathbf{Z})/\langle([2],[4])\rangle$

Question 4 (6 points)

Determinez le pgcd de $f(x) = x^7 + 6x^3 + 4x + 12$ and $g(x) = x^5 + 3x^4 + 2x^2 + 18$ dans $\mathbf{Q}[x]$.

Question 5 (16 points) Soit $p(x) = x^3 + x^2 + x + 3 \in (\mathbf{Z}/5\mathbf{Z})[x]$.

(a) (4 points) Montrez que $\mathfrak p$ est irréductible.



(c) (6 points) Montrez que I est un idéal maximal de $(\mathbf{Z}/5\mathbf{Z})[x].$

Question 6 (8 points)

Soit $f(x) = 2x + 1 \in (\mathbf{Z}/4\mathbf{Z})[x]$.

(a) (4 points) Determinez un inverse (multiplicatif) de f, notée par g(x).

(b) (4 points) Montrez que l'inverse de f est unique.

Question	7	(24	points)	١

Soit A un anneau commutatif. On dit qu'un élément $\mathfrak{a}\in A$ est nilpotent s'il existe un $\mathfrak{n}\in \mathbf{N}$ tel que $\mathfrak{a}^n=\mathfrak{0}.$

(a) (6 points) Determinez l'ensemble des éléments nilpotents dans ${\bf Z}/12{\bf Z}$. Est-il un idéal de ${\bf Z}/12{\bf Z}$?

(b) (6 points) Determinez tout les éléments inversibles dans ${\bf Z}/12{\bf Z}$. Est-ce que le groupe $({\bf Z}/12{\bf Z})^{\times}$ cyclique?

(c)	(6 points) Soient $a,b \in A$ nilpotents. (Indication: Il faut trouver $N \in \mathbf{N}$ tel que $(a+b)^N$		e $(a + b)$ est	nilpotent, aussi.
(d)	(6 points) Montrez que l'ensemble des él	éments nilpot	ents de A , noté	e par Nil(A), est
, ,	un idéal de A.			

Question 8 (16 points)

Determinez si les assertions suivantes sont vraies ou faux. Si oui démontrez, sinon donnez un contre-exemple.

(a) (4 points) $\alpha = (1235)(24567)(1872)(2946) \in A_9$.

(b) (4 points) Tout les sous-groupes de $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ d'ordre 4 est cyclique.

(c) (4 points) Le groupe multiplicatif $(\mathbf{Z}/8\mathbf{Z})^{\times}$ est cyclique.

(d) (4 points) Si A est un anneau, et $a, b, c \in A$ tels que ab = ac alors b = c.