MATH 532 EXERCISES 4

A. ZEYTİN

Exercises marked with * are your homework.

- (1) * Let L_1 be the line X + Y and L_2 be the line X Y.
 - Construct an algebraic curve, denoted by F for which L₁ is a tangent line of multiplicity 3, L₂ is a tangent line of multiplicity 2, and F is irreducible. <u>Hint:</u> Use higher order terms to make F irreducible.
 - Construct an algebraic curve, denoted by F for which L₁ is a tangent line of multiplicity r₁, L₂ is a tangent line of multiplicity r₂, and F is irreducible.
 - ▶ Repeat the question with arbitrary but finite number of lines with arbitrary but finite multiplicities.¹
- (2) Let \mathcal{O} be a local ring and m be its unique maximal ideal. Show that the following sequence is exact :

$$0 \longrightarrow \mathfrak{m}^n/\mathfrak{m}^{n+1} \longrightarrow \mathcal{O}/\mathfrak{m}^{n+1} \longrightarrow \mathcal{O}/\mathfrak{m}^n \longrightarrow 0.$$

Compute the above sequence for n = 1, 2, 3 explicitly for the following curves:

- ► $* Y X^2$,
- ► $Y X^3$,
- ► $Y^2 X^3$.

(3) The following questions are assigned from our textbook which is available at

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

 $2.14, 2.15, 2.22, 2.34, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13*, 3.14^2, 3.15,$

¹You'll need to solve Problem 2.34 from our textbook beforehand for this part of the question.

²You'll need to solve Problem 1.40 for this one, too.