Université Galatasaray, Département de Mathématiques 2016 - Spring Semester – Math 532 - Selected Topics in Algebraic Geometry Final Exam, 26 May 2017 – Ayberk Zeytin, 120 minutes Name & Surname: _______Sign: _____

Question:	1	2	3	Total
Points:	8	6	4	18
Score:				

Question 1 (8 points)

We fix our ground field to be \mathbf{C} (or any other algebraically closed field of characteristic 0.)

(a) (2 points) Recall the definition of the cone over an affine variety W.

(b) (2 points) Let W_1 be the parabola $V(y-x^2) \subseteq \mathbb{A}^2$. Draw the cone over W_1 and identify the line corresponding to the *point at infinity* on the projectivization of W_1 .

(c) (2 points) Show that the affine varieties $W_1 = V(y - x^2)$ and $W_2 = V(y - x^3)$ are isomorphic.

(d) (2 points) Decide whether their projective closures have isomorphic coordinate rings.

Question 2 (6 points)

Consider the projective curve $F(X, Y, Z) = Y^2Z^2 + Z^2X^2 + X^2Y^22XYZ(X + Y + Z)$. This curve is called the *tricuspidal quartic*.

(a) (2 points) Find an equation of the tangent line, say L, to the curve at P = (1 : 0 : 0), algebraically.

(b) (2 points) Show that the intersection multiplicity $I(P, F \cap L) = 3$. Such a point is called a cusp. Using symmetry of the equation, find the remaining two cusps(hence the name tricuspidal!). Name these points Q and R.

(c) (2 points) Find a quadric (i.e. a degree two curve in \mathbf{P}^2 - also called a conic because of its dimension) G that passes through the points P, Q and R. Decide whether F and G intersect in another point or not.

Question 3 (4 points)

Let L_1, L_2 be two disjoint lines in \mathbf{P}^3 and fix a point $a \in \mathbf{P}^3 \setminus (L_1 \cup L_2)$.

(a) (2 points) Show that there is a *unique* line L that passes through a, which intersects both L_1 and L_2 .

(b) (2 points) Is the result true if we replace \mathbf{P}_3 by $\mathbb{A}^3.$