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Question 1 (6 points)
Let k be an algebraically closed field.

(a) (2 points) Show that the circle V(X2 + Y2 − 1) is isomorphic (as an affine variety) to
the affine curve (in fact the hyperbola) V(XY − 1).



(b) (2 points) Show that V(XY − 1) is an irreducible algebraic set. Deduce that circle is
also irreducible.

(c) (2 points) Show that neither is isomorphic to A1(k).



Question 2 (4 points)
Let k be an infinite field (not necessarily algebraically closed).

(a) (2 points) Show that an f ∈ k[X1, . . . , Xn] that is identically zero on An(k) is the zero
polynomial (i.e., has all its coefficients zero).

(b) (2 points) Decide whether the claim is true if k is a finite field.



Question 3 (2 points)
Let k be a field (not necessarily algebraically closed). The set of formal power series over
k, written k[[X]] is defined to be :
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{ ∞∑
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}
.

This set becomes a ring under usual addition and multiplication:
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Note that k[[X]] contains k[X] as a subring. Show that k[[X]] is a discrete valuation ring
with local parameter X.


