Université Galatasaray, Département de Mathématiques 2017- Premier Semestre – Math 115 - Fondements de Mathématiques Examen Partiel 2, 13 décembre 2017 – Ayberk Zeytin 90 mins. Nom & Prénom:

Question:	1	2	3	4	5	6	7	Total
Points:	8	10	10	8	6	8	8	58
Score:								

Question 1 (8 points)

Soit R une relation sur un ensemble non-vide A. On définit

relation inverse de
$$R : R^{-1} = \{(b, a) \in A \times A : (a, b) \in R\}.$$

(a) (4 points) Déterminer 4 relations binaires distinctes, R_i , i=1,2,3,4 sur A telles que $R_i=R_i^{-1}$ pour i=1,2,3,4.

(b) (4 points) Vrai ou faux: Si R est une relation binaire sur A telle que $R = R^{-1}$, alors R est une relation d'équivalence.

Question 2 (10 points)

Soit A un ensemble non-vide et R une relation sur A. Décider si les assertions suivantes sont vraies ou faux; si vraie démontrer, si faux donner un contre-exemple :

(a) (5 points) Si R est symétrique et transitive alors R est nécessairement reflexive.

(b) (5 points) Si ${\sf R}$ est reflexive et transitive alors ${\sf R}$ est nécessairement symétrique.

Question	3	(10)	points)

On dit que R est circulaire si $(a,b) \in R$ et $(b,c) \in R$ alors $(c,a) \in R$.

(a) (4 points) On pose $A = \{1, 2, 3\}$. Déterminer tout les éléments, disons (a, b), de $A \times A$ tel que la relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2)\} \cup \{(a, b)\}$ est une relation circulaire.

(b) (6 points) Soit A un ensemble non-vide quelconque et R une relation sur A. Montrer que R est une relation d'équivalence si et seulement si R est réflexive et circulaire.

Question 4 (8 points)

Soit $A = \{3, 5, 9, 15, 24, 45\}$. On considère la relation d'ordre partiel : $a \preccurlyeq b : \Leftrightarrow a|b$.

- (a) (2 points) S'ils existent déterminer les éléments minimaux et maximaux de A.
- (b) (2 points) S'ils existent déterminer un majorant et un minorant de {9,5,15}.
- (c) (2 points) S'ils existent déterminer un plus grand et un plus petit élément de {3,9,15}.
- (d) (2 points) Si elles existent déterminer une borne supérieure et une borne inférieure de $\{3, 9, 15\}$.

Question 5 (6 points)

Montrer que pour $K \in \mathbf{N}$ on a $\sum_{n=1}^K \frac{1}{n \cdot (n+1)} = 1 - \frac{1}{K+1}.$

Question 6 (8 points)
Soient A, B deux ensembles dénombrables. Montrer que $A\cup B$ est dénombrable, aussi.
Question 7 (8 points) Déterminer une hijection entre (1.2) P et (1.22) P En déduire que nour teut n 7
Déterminer une bijection entre $(1,2) \subset \mathbf{R}$ et $(1,\infty) \subset \mathbf{R}$. En déduire que pour tout $n \in \mathbf{Z}$ existe une biljection entre $(n,n+1)$ et $(1,\infty)$.
existe the objection entire (19,10 + 1) of (1900).