MATH 504 EXERCISES 4

A. ZEYTİN

Unless otherwise stated R is a ring.

(1) Let X be a non-empty set and $\mathcal{P}(X)$ is the set of all subsets of X. For any two elements A, $B \in \mathcal{P}(X)$ we define

 $A+B:=(A-B)\cup(B-A) \quad \text{ and } \quad A\cdot B:=A\cap B$

- Show that $\mathcal{P}(X)$ endowed with these two operations become a ring.
- Show that $\mathcal{P}(X)$ is commutative.
- Show that $\mathcal{P}(X)$ has identity.
- Show that for any subset A of P(X) we have $A^2 = A$. Such rings, that rings for which $x^2 = x$ for all $x \in R$ are called *Boolean rings*.
- Investigate what happens if we define $A + B := A \cup B$.
- (2) Let R and S be two rings.
 - ▶ Define proper operations (addition and multiplication) on R × S so that R × S becomes a ring.
 - ▶ Show that the following sets are subrings of $R \times S$
 - i. $\{(r, 0) : r \in R\}$
 - ii. $\{(0, s): s \in S\}$
 - ▶ Prove that R × S is commutative if and only if both R and S are commutative.
 - ▶ Show that R × S is has an identity if and only if both R and S has identity.
 - ► Show that even if R and S are integral domains R × S is not an integral domain.
- (3) Let R be a ring with unity, i.e. $1 \in R$. Show that the commutativity of addition is *forced* by distributivity. <u>Hint:</u> For any $a, b \in R$ compute (1 + 1)(a + b) in two different ways.
- (4) For any square-free integer D we let

$$\mathbf{Q}(\sqrt{\delta}) := \left\{ a + b\sqrt{\delta} \, | \, a, b \in QQ
ight\}.$$

- Show that $\mathbf{Q}(\sqrt{\delta})$ is a field. Decide what happens if δ is not square-free.
- Show that $\mathbf{Z}[\sqrt{\delta}] := \left\{ a + b\sqrt{\delta} \mid a, b \in \mathbf{Z} \right\}$ is a subring of $\mathbf{Q}(\sqrt{\delta})$. When $\delta = -1$ $\mathbf{Z}[\sqrt{-1}]$ is called the ring of Gaussian integers.
- (5) Decide which of the following sets are subrings of the ring of all function from [-1, 1] to \mathbf{R} , denoted by $F([-1, 1], \mathbf{R})$:
 - ▶ { $f \in F([-1, 1], \mathbf{R}) | f(q) = 0$ for all $q \in \mathbf{Q}$ }
 - ▶ { $f \in F([-1, 1], \mathbf{R}) | f f is a polynomial$ }
 - ▶ { $f \in F([-1, 1], \mathbf{R}) | f$ has infinitely many zeroes}
 - ▶ { $f \in F([-1, 1], \mathbf{R}) \mid \lim_{x \to 0} f(x) \text{ exists}$ }
 - ▶ { $f \in F([-1, 1], \mathbf{R}) \mid \lim_{x \to 0} f(x) = 0$ }
 - ▶ { $f \in F([-1, 1], \mathbf{R}) \mid \lim_{x \to 0} f(x) = 1$ }

(6) Let $\alpha \in R$ be a nilpotent element of R, that is there is some natural number m so that $\alpha^m = 0$.

- Show that α is either 0 or a zero divisor.
- For any $r \in R$ show that $r\alpha$ is also a nilpotent element.
- If β is another nilpotent element of R, then $\alpha \beta$ is also nilpotent.
- Show that if $1 \in R$, then $1 + \alpha$ is a unit. Prove, more generally that nilpotent+unit = unit.
- (7) Show that a ring homomorphism $\varphi \colon R \to S$ is injective if and only in ker(φ) = {0}.
- (8) Let $R = C^{\infty}(\mathbf{R}, \mathbf{R})$ be the ring of all infinitely many times differentiable functions from \mathbf{R} to \mathbf{R} Define :

$$\begin{array}{rcl} \varphi \colon R & \to & R \\ f(t) & \mapsto & \displaystyle \frac{d}{dt} f(t) \end{array}$$

Decide whether φ is a ring homomorphism.

- (9) Give an example of a ring homomorphism $\varphi \colon R \to R'$ where R is a ring with 1 but $\varphi(1)$ is not a unit of R'.
- (10) Find a subring of $\mathbf{Z} \times \mathbf{Z}$ that is not an ideal.
- (11) Let φ : $R \to R'$ be a ring homomorphism, I an ideal of R and I' and ideal of R'.
 - Show that $\varphi(I)$ is an ideal of $im(()\varphi)$.
 - Show that $\varphi^{-1}(I')$ is an ideal of R.
 - ► If I is a maximal/prime ideal of R decide whether $\varphi(I)$ is a maximal/prime ideal of $im(()\varphi)$.
 - ► If I' is a maximal/prime ideal of R' decide whether $\varphi^{-1}(I)$ is a maximal/prime ideal of R.
 - Give an example of a ring homomorphism $\varphi \colon R \to R'$ so that $\varphi(I)$ is not an ideal of R'.
- (12) Let R be a commutative ring with 1 and let $a \in R$ be a fixed but arbitrary element. Show that the set Ann(a) = { $r \in R$: ra = 0} is an ideal of R.
- (13) Show that the collection of all nilpotent elements of a ring R form an ideal, called the *nilradical* of R.
- (14) Find all ideals of the following rings. Decide which of them are maximal/prime?
 - ► Z/6Z,
 - ► Z/12Z,
 - ► Z/18Z,
 - $\blacktriangleright \mathbf{Z}/6\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}.$
- (15) Let I, J be two ideals of a ring R. Show that the set

$$I: J := \{r \in R: rj \in I \text{ for all } j \in J\}$$

is an ideal of R. Compute I : J where

- $\blacktriangleright R = \mathbf{Z}, I = 6\mathbf{Z}, J = 18\mathbf{Z}$
- $\blacktriangleright R = \mathbf{Z}, I = 18\mathbf{Z}, J = 6\mathbf{Z}$
- $\blacktriangleright R = \mathbf{Z}, I = 8\mathbf{Z}, J = 12\mathbf{Z}$
- ► R = Z, I = 12Z, J = 8Z

(16) Let $R = M^{2 \times 2}(\mathbf{Z}/2\mathbf{Z})$.

- ► Determine the number of elements in R.
- ► Determine all ideals of R.
- (17) Complete the proofs of 3rd and 4th isomorphism theorems.