Université Galatasaray, Departement de Mathematique	S
2017 - Fall Semester – Math 504 - Advanced Algebra	
Final, 10 January 2018 – Ayberk Zeytin, 180 min.s	
Name & Surname:	Sign:

Question:	1	2	3	4	Total
Points:	16	6	4	6	32
Score:					

Question 1 (16 points)

Let G be a group and let $\operatorname{Aut}(G)$ denote the group of automorphisms of G. Recall that for any $g \in G$ the map

$$\begin{array}{ccc} \phi_g \colon G & \longrightarrow G \\ & x & \mapsto g \, x \, g^{-1} \end{array}$$

is called an inner automorphism, and the set of all inner automorphisms of G, denoted by Inn(G), is a subgroup of Aut(G). Define :

$$G_1=G \ \mathrm{and} \ G_{n+1}=\mathrm{Aut}(G_n) \ \mathrm{for} \ n\in \mathbf{N}$$

and consider the family of maps

$$\pi_n \colon G_n \longrightarrow G_{n+1}$$
 $g \mapsto \pi_n(g);$

where $\pi_n(g) \colon G_n \to G_n$ is defined by sending $x \in G_n$ to $g \, x \, g^{-1}$.

(a) (2 points) Show that $\pi_n\colon G_n\to G_{n+1}$ is a group homomorphism and hence we have a sequence of maps :

$$G_1 = G \xrightarrow{\pi_1} G_2 = \operatorname{Aut}(G) \xrightarrow{\pi_2} G_3 \xrightarrow{\pi_3} \cdots$$
 (1)

(b)	(2 points)	Show that	$\pi_n(G_n)$ is	a norma	ıl subgrou	up of G_{n+}	1.	
(c)	(2 points)	Show that	whenever	$Z(G) = \{$	$\{e\}$, the m	aps π _n aı	re injective.	

(d)	(2 points)	Show that	$C_{G_{n+1}}(\pi_n($	$G_{\mathfrak{n}}))=\{e\}.$

For the remainder of the problem, we set $G = \mathfrak{S}_4$, the symmetric group on $\{1,2,3,4\}$.

(e) (2 points) Show that any automorphism ϕ of G permutes the Sylow 3-subgroups of G, i.e. if $\phi \colon G \to G$ an element of $\operatorname{Aut}(G)$, and P is any Sylow 3 subgroup of G, then $\phi(P)$ is a Sylow 3-subgroup of G.

(f) (2 points) Show that if $\phi \in \operatorname{Aut}(G)$ fixes each Sylow 3-subgroup, then ϕ is the	e identity.
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of G is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of G is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of G is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of G is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of G is an inner automorphism.	
(g) (2 points) Deduce that every automorphism of ${\sf G}$ is an inner automorphism.	

$$G_1 \to G_2 \to G_3 \to \cdots$$

Question 2 (6 points)

Let $\mathfrak p$ be a prime number and $G=\mathrm{GL}_2(\mathbf Z/\mathfrak p\mathbf Z)$ be the group of invertible 2×2 matrices with entries from the field $\mathbf Z/\mathfrak p\mathbf Z$.

(a) (2 points) Show that the order of G is $(p^2 - 1)(p^2 - p)$. (Hint: Try to count the number of linearly independent pairs of vectors.)

(b)	(2	points)	Determine the number of Sylow p-subgroups of G.
(c)	(2	points)	Explicitly describe a Sylow p-subgroup of G.
		ŕ	

Question 3 (4 points)

Let S be a multiplicative subset of a non-trivial commutative ring R.

(a) (2 points) Show that if R is an integral domain, then so is $S^{-1}R.\,$

(b) (2 points) For $S = \{2,4\} \subset R = \mathbf{Z}/6\mathbf{Z}$ what is $S^{-1}R$. Relate this to part (a).

Question 4 (6 points)

Let R be a commutative ring with 1 and let

$$0 \to A \xrightarrow{\phi} B \xrightarrow{\psi} C \to 0$$

be a short exact sequence of R-modules. Assume that there are elements r, s in R so that (r, s) = R. Suppose that $rA = \{0\}$ and $sC = \{0\}$.

(a) (2 points) Show multiplication by ${\mathfrak r}$ map defines an R-module isomorphism from C to C, that is, the map :

$$\begin{array}{ccc} m_r \colon C & \to C \\ c & \mapsto rc \end{array}$$

is an isomorphism of R-modules.

(b) (2 points) Show that $rB = \{rb: b \in B\}$ is a submodule of B and the restriction of the ψ to rB in an R-module isomorphism from rB to C.

(c) (2 points) Show that $B \cong A \oplus C$.