Université Galatasaray, Département de Mathématiques 2017 - Fall Semester – Math 504 - Advanced Algebra Mid Term Exam, 18 December 2017 – Ayberk Zeytin, 150 min.s Name & Surname: _______Sign: _____

Question:	1	2	3	4	Total
Points:	4	6	8	10	28
Score:					

Question 1 (4 points)

Let G be a nilpotent group and $\varphi \colon G \to H$ be a surjective group homomorphism.

(a) (2 points) Show that H is also nilpotent.

(b) (2 points) Deduce that if φ is non-trivial, i.e. $H \neq \{e\}$, then H has non-trivial center.

Question 2 (6 points)

Let R,R^\prime be two commutative rings with identity.

(a) (2 points) Let $\varphi \colon R \to R'$ be a surjective ring homomorphism and R be a PID. Show that R' is an integral domain if and only if R' is a field.

(b) (2 points) Deduce that if k is a field, then any ring homomorphism $\psi \colon k[x] \to \mathbf{Z}$ is must be trivial.

(c) (2 points) Construct infinitely many distinct homomorphisms from $\mathbf{Q}[\mathbf{x}]$ to \mathbf{Q} .

Question 3 (8 points)

Let R be the ring of all continuous functions from [0,1] to ${\bf R}.$

(a) (2 points) Determine the units of R.

(b) (2 points) For any fixed $a \in [0,1],$ let I_a denote the set of all elements of R which vanish at a; that is

 $I_{\mathfrak{a}} := \{ f \colon [0,1] \to \mathbf{R} \, | \, f(\mathfrak{a}) = 0 \}.$

Show that $I_{\mathfrak{a}}$ is a maximal ideal of R.

(c) (2 points) Show that the set :

$${f \in R: f(1/504) = 0 \text{ and } f(1/501) = 0}$$

is an ideal of R. Is it prime?

(d) (2 points) Show that any maximal ideal of R is of the form $I_{\mathfrak{a}}$ for some $\mathfrak{a} \in [0,1].$

Question 4 (10 points)

Let d > 3 be a square-free integer and set $R = \mathbf{Z}[\sqrt{-d}]$.

(a) (2 points) Show that the function $N\colon R\to {\bf Z}$ defined by $N(a+b\sqrt{-d}):=a^2+db^2$ is a norm on R.

(b) (2 points) Show that N is multiplicative, i.e. $N(\alpha \beta) = N(\alpha) N(\beta)$ for any $\alpha, \beta \in R$.

(c) (2 points) Show that 2, $\sqrt{-d}$ and $1 + \sqrt{-d}$ are all irreducible in R.

(d) (2 points) Prove that R is not a UFD.

(e) (2 points) Give an explicit ideal in R which is not principal. (Hint: Your candidate can be a maximal ideal. Use (c).)