Question:	1	2	3	4	5	Total
Points:	16	6	6	20	48	96
Score:						

Question 1 (16 points)

Soit $G = A_4 \times A_4$.

(a) (4 points) Déterminer $\mathrm{Syl}_3(A_4)$ explicitement.

(b) (4 points) Déterminer Syl₃(G) explicitement.

(c)	(4 points)	Considerez l'action de G sur $\mathrm{Syl}_3(G)$ par conjugaison.	Déterminer Stab(P).
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de $\mathrm{Syl}_3(G)$ et détermine	r [P].
(d)	(4 points)	Choisir un element, disons P, de Syl ₃ (G) et détermine	r [P].

Question 2 (6 points)

Soit A un anneau intégre. Supposons qu'il existe deux éléments $a,b\in A$ et deux entiers naturels m,n premiers entre eux (c'est-à-dire $\operatorname{pgcd}(m,n)=1$), tels que $a^m=b^m$ et $a^n=b^n$. Montrer que a=b.

Question 3 (6 points)

Soit A un anneau unitaire (pas commutatif nécessairement) et $a, b \in A \setminus \{0\}$ deux éléments quelconques. Montrer que si 1-ab est inversible dans A, alors 1-ba est inversible dans A, aussi. (Indication: Noter que (1-ab)a=a(1-ba).)

Question 4 (20 points)

Soit $k = \mathbb{Z}/2\mathbb{Z}$. On pose $f(X) = X^3 + X^2 + 1 \in k[X]$

(a) (4 points) Montrer que f(X) est irreductible.

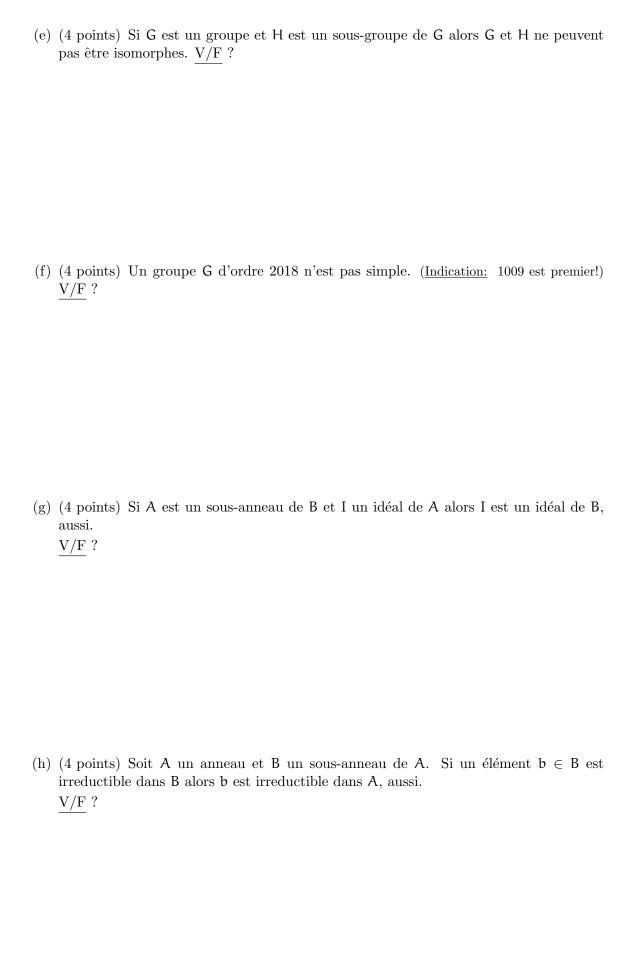
(b) (6 points) Montrer que $(X^4+X^3+X,X^5+X^4+X^3+1)=(f(X))$. (<u>Indication:</u> Calculer le pgcd et utiliser Théorème de Bezout pour k[X].)

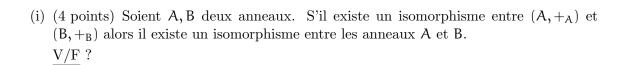
(c) (4 points)	En déduire que $K = \frac{1}{2}$	k[X]/(f(X)) est un	corps. Déterminer $ K $.	
(d) (6 points)	Écrire la table de mu	ultiplication de K×	et déterminer le groupe K^{\times}	(
(d) (d points)	Lettre la table de me	implication de K	et determiner le groupe K	•

Question 5 (48 points)

Décider si les assertions suivantes sont vraies ou faux. Si vrai démontrer sinon donner un contre-exemple :

(a) (4 points) Si G est un groupe et $\mathfrak{a},\mathfrak{b}\in G$ tels que $\mathrm{ord}(\mathfrak{a})<\infty$ et $\mathrm{ord}(\mathfrak{b})<\infty,$ alors $\mathrm{ord}(\mathfrak{a}\mathfrak{b})<\infty$


V/F ?


(b) (4 points) Si G est un groupe d'ordre $\mathfrak n$ et $\mathfrak d\in \mathbf N$ un entier naturel qui divise $\mathfrak n$, alors il existe un $\mathfrak g\in G$ tel que $\operatorname{ord}(\mathfrak g)=\mathfrak d$.

V/F?

(c) (4 points) Soient H et K deux sous-groupes quelconques d'un groupe G d'ordres m et n respectivement. Si $\operatorname{pgcd}(\mathfrak{m},\mathfrak{n})=1$ alors $H\cap K=\{e\}.$ V/F ?

(d) (4 points) Soient G un groupe (pas abélien nécessairement), H et K deux sous groupes distingués de G. Si $H \cap K = \{e\}$, alors hk = kh pour tout $h \in H$ et $k \in K$. V/F?

(j) (4 points) Un homomorphisme (non-trivial) d'anneaux commutatifs
$$\phi\colon k\to A$$
 est injective si k est un corps.
$$\underline{V/F}\ ?$$

(k) (4 points) Si A est un anneau intégre et I un idéal de A alors A/I est un anneau intégre, aussi.
$$\frac{\rm V/F}{\rm ?}$$

(l) (4 points)
$$X^{23}+21X^{17}-9x^{13}+12X^7-6\in \mathbf{Q}[X]$$
 est irreductible. $\underline{V/F}$?