MATH 532 EXERCISES 3

A. ZEYTİN

Unless otherwise stated K and k are fields and K/k is a field extesion.

- (1) Show that if p and q are two distinct prime numbers then the fields $\mathbf{Q}(\sqrt{p})$ and $\mathbf{Q}(\sqrt{q})$ are not isomorphic.
- (2) Let k be a field and consider the extension k(t)/k.
 - Show that $\sigma : t \mapsto t + 1$ defines an automorphism of k(t).
 - Determine the fixed field of σ.
- (3) Let K/k be an extension and φ : K \rightarrow K' be a field isomorphism. Let k' = $\varphi(k)$.
 - ▶ Show that k' is a subfield of K'.
 - ► Show that the map

$$\pi: \operatorname{Aut}(K/k) \to \operatorname{Aut}(K'/k')$$
$$\sigma \mapsto \varphi \, \sigma \, \varphi^{-1}$$

defines a group isomorphism.

(4) Let k be a field of characteristic 0. Consider the extensions $K = k(X^2)$ and $K' = k(X^2 - X)$ as subextensions of k(X). Show that $K \cap K' = k$. <u>Hint</u>: Consider Aut(k(X)/K) and Aut(k(X)/K'). They both contain two elements. What is the order of the composition?

(5) Let p be an odd prime number and let $\zeta_p = \exp(2\pi\sqrt{-1}/p)$. Set $K = \mathbf{Q}(\zeta_p)$.

- ► Find the minimal polynomial of ζ_p and show that the remaining roots are $\exp(k2\pi\sqrt{-1}/p)$ for $2 \le k \le 1$ p - 1.
- Determine the automorphism group of the extension K/Q and deduce that the extension K/Q is Galois.
- ▶ Show that $Gal(K/\mathbf{Q})$ contains a unique subgroup of index 2, denoted H henceforth.
- Define $\alpha = \sum_{\sigma \in H} \sigma(\zeta_p)$ and $\beta = \sum_{\sigma \in G \setminus H} \sigma(\zeta_p)$. Show that $\alpha, \beta \in Fix(H)$.
- For any $\sigma \in (G \setminus H)$ show that $\sigma(\alpha) = \beta$ and $\sigma(\beta) = \alpha$.
- Deduce the minimal polynomial of α (and hence β).
- Determine $\alpha\beta$ explicitly and show that $Fix(H) = \mathbf{Q}(\sqrt{p})$.
- ▶ Make the above computations explicit when p = 5.

(6) Let $K = Q(\sqrt{2}, \sqrt{3})$ and $L = K(\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)})$ considered as subextensions of the extension R/Q.

- Show that the extension K/Q is Galois with $Gal(K/Q) = Z/2Z \times Z/2Z$.
- Show that L/Q is Galois with Gal(L/Q) being the quaternion group.

(7) Determine the minimal polynomials of the following elements:

- $\blacktriangleright \sqrt{2} + \sqrt{3}$
- ► $1 + \sqrt[3]{2} + \sqrt[3]{4}$ ► $\zeta_p + \zeta_p^{p-1}$ (or more generally $\zeta_p^i + \zeta_p^{p-i}$)
- ► Show that the polynomial $f(X) = X^4 2X^2 2$ is irreducible in Q[X]
 - Show that $\alpha_1 = \sqrt{1 + \sqrt{3}}$, $\alpha_2 = -\alpha_1$, $\alpha_3 = \sqrt{1 \sqrt{3}}$, $\alpha_4 = -\alpha_3$ are the roots of f(X).
 - Show that the fields $\mathbf{Q}(\alpha_1)$ and $\mathbf{Q}(\alpha_3)$ are distinct subextensions of a splitting field of K.
 - Show that $\mathbf{Q}(\alpha_1) \cap \mathbf{Q}(\alpha_3) = \mathbf{Q}(\sqrt{3})$
 - Show that $\mathbf{Q}(\alpha_1)/\mathbf{Q}(\sqrt{3})$ is a Galois extension. What is its Galois group?
 - Show that $\mathbf{Q}(\alpha_3)/\mathbf{Q}(\sqrt{3})$ is a Galois extension. What is its Galois group?
 - ▶ Find the Galois group of a splitting field for f(X).