MATH 532 EXERCISES 5

A. ZEYTİN

Unless otherwise stated K and k are fields and K/k is a field extension.

- (1) Let \mathcal{D} be a semi-group with unique factorization and let $a, b, c \in \mathcal{D}$. Prove that :
 - ▶ if ab is divisible by c and b is relatively prime to c, then a is divisible by c.
 - ▶ if c is divisible by both a and b which are relatively prime, then c is divisible by their product ab.
 - ▶ if a product ab is divisible by a prime element $p \in D$, then at least one of a or b is divisible by p.
- (2) Let \mathcal{O} be a ring with a divisor theory \mathcal{D} . Explicitly determine which properties of a valuation fails when one considers a valuation v_{α} associated with an element $a \in \mathcal{D}$ which is not prime.
- (3) Let $v_p : \mathcal{O} \to \mathbf{Z}_{\geq 0}$ be the valuation associated to a prime divisor $p \in \mathcal{D}$ on an integral domain \mathcal{O} endowed with a divisor theory \mathcal{D} .
 - Show that $v_p(\alpha\beta) = v_p(\alpha) + v_p(\beta)$
 - Show that $v_p(\alpha + \beta) \ge \min\{v_p(\alpha), v_p(\beta)\}$
 - ► Let K be the field of fractions of \mathcal{O} . Extend the valuation ν_p to K via defining $\nu_p(\xi) = \nu_p(\alpha/\beta) := \nu_p(\alpha) \nu_p(\beta)$, for $\alpha, \beta \in \mathcal{O}$. Verify that the extended ν_p is well-defined (i.e. independent of the choice of generators chosen for the class α/β) and satisfies all the axioms of a valuation.
 - Show that distinct prime divisors $p \in D$ give rise to distinct prime divisors.
- (4) Let k be an algebraically closed field.
 - ► Show that all irreducible polynomials in k[X] are linear. Deduce that there is a one to one correspondence between k and irreducible polynomials in k[X].
 - Show that for each irreducible polynomials $X a \in k[X]$ the function defined as the function :

$$v_{a} \colon k[X] \to \mathbf{Z}_{\geq 0}$$

 $p(x) \mapsto n;$

where for any $p(X) \in k[X]$, n is the unique integer determined by $(X - a)^n | p(X)$ but $(X - a)^{n+1} \nmid p(X)$ defines a valuation on k[X] and hence on k(X).

► Whenever k = C show that this definition agrees with the definition of the order of vanishing of a function at a point a ∈ C.