MATH 532 EXERCISES 5

A. ZEYTİN

Unless otherwise stated K and k are fields and K/k is a field extension.

(1) Let v be a valuation on a field k.

- Show that the set $\mathcal{O} = \{ \alpha \in k \mid v(\alpha) \ge 0 \}$ is a ring. This ring is called a valuation ring of k.
- Show that the set $\mathfrak{m} = \{\alpha \in k \mid \nu(\alpha) > 0\}$ is an ideal of k.
- Show that an element in \mathcal{O} is a unit if and only if $\nu(\alpha) = 0$, hence the units of \mathcal{O} are characterized by the property that $\nu(\alpha) = 1$.
- Show that there is an element $\pi \in \mathcal{O}$ with $\nu(\pi) = 1$. π is called a *uniformizer*.
- Show that any element $x \in O$ can be written as $x = u\pi^n$ for some unit u of O and non-negative integer n. Deduce that O is a UFD.
- Deduce further that O is a PID. more precisely, show that any ideal I of O is of the form (πⁿ) for some non-negative integer n.
- Deduce that \mathcal{O}/\mathfrak{m} is a field, called the *residue field*.
- ► Let p be an odd prime number and ν_p the associated valuation on Q. Determine O, m and the residue field O/m.
- ► Repeat the previous problem for a fixed monic irreducible polynomial p(X) ∈ k[X]; where k is an algebraically closed field.
- (2) Let K = k(X) be the field of rational functions with coefficients from the field k. Let f(X) be an irreducible polynomial in k[X].
 - Show that every element $u(X) \in K$ can be written as $f^k(\alpha(X)/\beta(X))$ for some polynomials $\alpha(X), \beta(X) \in k[X]$ which are relatively prime to f(X).
 - ► Use the previous exercise to define the valuation of u(X), denoted by v_f(u) as k. Show that this definition gives an honest valuation on K.
 - Exemplify the situation described above for various different fields.
- (3) For any field k on the ring k[X] define the valuation $\nu_{\infty}(\alpha(X)/\beta(X)) := \deg(\alpha(X)) \deg(\beta(X))$. Show that ν_{∞} defines a valuation on k(X).